
4th Marathon of Parallel Programming – SBAC’2009 1

Problem A
3SAT1

Satisfiability is a problem that takes an expression made up of the conjunction of

disjunctions between Boolean variables. To solve the problem you must determine

whether or not an assignment of TRUE or FALSE to the Boolean variables exists that

will make the entire expression evaluate to TRUE. The Satisfiability belongs to the NP-

complete class problem.

The 3SAT problem is a version of Satisfiability that restricts the size of the disjunction

subexpressions to contain exactly three variables. An example of a 3SAT expression

would be:

(X_1 | !X_2 | X_3) & (X_3 | X_2 | !X_1) & (X_2 | X_1 | !X_3) & (!X_1 | !X_2 | !X_3)

where ‘|’ is OR, ‘&’ is AND, and ‘!’ signifies NOT. This expression is satisfied when

the variables X_1 and X_2 are TRUE and X_3 is FALSE.

Write a parallel program that determines if there is an assignment of Boolean values that

will satisfy the given 3SAT expression.

Input
The input contains only one test case. The first line contains two integers: the maximum

number of variables that will be in the expression (N) and the number of disjunction

subexpressions in the file (K), separated by a single space (1 ≤ N ≤ 100, 1 ≤ K ≤ 104).

The next K lines will contain three integers from abs([1,N]) separated by a space. These

integers represent the subscript of a Boolean variable and a negative value represents

the negation of the Boolean variable within that subexpression.

The input must be read from standard input

Output
If there is an assignment that satisfies the entire input expression, the output contains N

lines. Each line corresponds to one of the N variables and the Boolean value needed.

1 Based on 3SAT problem from 2009 Intel Threading Challenge.

4th Marathon of Parallel Programming – SBAC’2009 2

The format of each line is an integer from [1,N], a space, and the character ‘T’ or ‘F’ for

the assignment of TRUE or FALSE, respectively. The variables must be ordered.

Otherwise, if there is no solution, the output contains only one message ‘Solution is not

possible’.

The output must be written to standard output

Example 1
Input

3 4
1 -2 3
3 2 -1
2 1 -3
-1 -2 -3

Output for the input

1 T
2 T
3 F

Example 2

Input

1 2
1 1 1
-1 -1 -1

Output for the input

Solution is not possible

4th Marathon of Parallel Programming – SBAC’2009 3

Problem B
DNA subsequences2

FASTA archive is a text-based format to store DNA/RNA in witch the bases are

represented using single-letter codes. In bioinformatics, this file is used to sequence

alignment and string matching.

Write a parallel program to find DNA subsequences (a.k.a. query string) in a FASTA

database. If a query string matches within multiple sequences, each result must be

reported. If a query string matches multiple locations in the same sequence, the earliest

position that matches exactly must be reported.

Input
The input must be read from two different files. Both of them follow FASTA format.

The FASTA format represents many sequences. Each sequence contains one line with

the DNA description followed by several lines with the bases. The description line

begin with a greater-than character (‘>’). The bases sequence are made up of only four

characters (‘A’, ‘T’, ‘C’, ‘G’) and divided by line within 80 characters per line. The file

ends with the EOF-mark. The base length is up to 1,000,000 bases.

The database must be read from a file named dna.in

The query file must be read from a file named query.in

Output
The output contains the string matching results. For each query string, the program must

output its description in one line followed by its report. If the query string was found

within the database, the report contains the sequences description followed by the

position within the sequences that exactly match. If the query string is not found within

any sequences, a ‘NOT FOUND’ message must be printed.

The output must be written to a file named dna.out

2 Based on String Matchin problem from 2009 Intel Threading Challenge.

4th Marathon of Parallel Programming – SBAC’2009 4

Example
FASTA database

>Escherichia coli partial genome (1)
AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTG
TCTGATAGCAGCTTCTGAACTG
GTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCA
>Escherichia coli partial genome (2)
CTAAATACTTTAACCAATATAGGCATAGCGCACAGACAGATAAAAATTACAGAGTACA
CAACATCCATGAAACGCATTAG
CACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGACGCGTA
CAGGAAACACAGAAAAAAGCCC
GCACCTGACAGTGCGGGCTTTTTTTTTCGACCAAAGGTAACGAGGTAACAACCATGCG
AGTGTTGAAGTTCGGCGGTACA

Query file

>Query string #1
TATAGG
>Query string #2
TTTT
>Query string #3
ATCG
>Query string #4
AACTGG

Output

>Query string #1
>Escherichia coli partial genome (2)
17
>Query string #2
>Escherichia coli partial genome (1)
3
>Escherichia coli partial genome (2)
178
>Query string #3
NOT FOUND
>Query string #4
>Escherichia coli partial genome (1)
75

4th Marathon of Parallel Programming – SBAC’2009 5

Problem C
Machin’s π

In 1706, John Machin proposed a simple formula to compute the mathematical constant

π that converges very quickly:

)239cot()5cot(4
4

arcarc −⋅=
π

In his formula, the arc cotangent function was calculated using an expansion Taylor

series:

∑
∞

=
+⋅+

−
=

0
)12()12(

)1()cot(
n

n

n

xn
xarc

Since π number has infinite decimal places, computational implementation reduces it to

only some “trillion” places.

Write a parallel program that computes the π number.

Input
The input contains only one test case. The first line contains only one number (D) that

represents the amount of decimal places (1 ≤ D ≤ 10127).

The input must be read from standard input

Output
The output contains only one line printing the π number with exact D decimal places.

The output must be written to standard output

Example

Input

100

Output for the input

3.14159238864170925052793894
2339921327748217933916756060
5320680021288184633384518603
582058144592135732

4th Marathon of Parallel Programming – SBAC’2009 6

Problem D
MSD Sorting3

The Radix Sort algorithms can be classified in two basic groups: least significant digit

(LSD) and most significant digit (MSD). The LSD approach examines the digits in the

keys in a right-to-left order, working with the least significant digits. The other

approach (MSD) examines the digits in the key in a left-to-right order. Figure D.1 show

an example of LSD and MSD radix-sort using 3-digits integer keys.

Figure D.1. – Summary of LSD and MSD approaches.

When a digit is chosen for MSD sorting, an internal sorting can be used to organize the

keys, grouping them with the same digit. This internal sorting can use a “fat-pivot”

quicksort algorithm (three-way partitioning), taking advantage of repeating digits.

Write a parallel program that uses a MSD algorithm to sort keys.

Input
The input file contains only one test case. The first line contains the total number of

keys (N) to be sorted (1 ≤ N ≤ 1010). The following lines contain N keys, each key in a

separate line. A key is a seven-character string made up of printable characters (0x21 to

0x7E – ASCII) not including the space character (0x20 ASCII).

The input must be read from a file named radix.in

Output
The output file contains the sorted keys. Each key must be in a separate line.

The output must be written to a file named radix.out

3 Bases on Radix Sort problem from 2009 Intel Threading Challenge.

4th Marathon of Parallel Programming – SBAC’2009 7

Example

Input

11
SINAPAD
SbacPad
Wscad09
Sinapad
1234567
LADGRID
WEAC-09
CTDeWIC
sinaPAD
MPP2009
SINApad

Output for the input

1234567
CTDeWIC
LADGRID
MPP2009
SINAPAD
SINApad
SbacPad
Sinapad
WEAC-09
Wscad09
sinaPAD

4th Marathon of Parallel Programming – SBAC’2009 8

Problem E
Software Testing

White box testing is a difficult task for engineering. They have to analyze the source

code and build a control flow graph before define the test cases. In order to decrease the

manual effort, some tools find that graph and show some information about the source

code.

One of this information, applying to object oriented codes, is to find the relationship

between classes/objects. When the number of relationship is very high, the software

testing becomes prohibited.

Write a parallel version of the source code that calculates one information of a given

control flow graph.

Input
The input contains only a test case. The first line contains the number (N) of nodes. The

following lines contain pairs of X and Y that represents a vertex from node X to node Y

and vice-versa (1 ≤ X, Y ≤ N).

The input must be read from standard input

Output
The output contains only one line with the number of relationship found on the control

flow graph.

The output must be written to standard output

4th Marathon of Parallel Programming – SBAC’2009 9

Example

Input

5
1 2
1 3
1 4
1 5
2 3
2 4
3 4
4 5

Output for the input

4

4th Marathon of Parallel Programming – SBAC’2009 10

Problem F
Fibonacci numbers

Fibonacci numbers is a well-kwon sequence of numbers that follows the recurrence

relation Fn = Fn-1 + Fn-2, with seeds values F0=0 and F1=1.

The Fibonacci numbers are used in many researches such as mathematics, computer

science and physics. Besides, it can be found in nature too, such as branching in trees,

arrangement of leaves on a stem, the fruitlets of a pineapple among others.

Write a program that calculates the Fibonacci sequence.

Input
The input contains only one test case. The first line contains only one number (N) that

will be used to search the Fn number on the Fibonacci sequence (0 ≤ N ≤ 105).

The input must be read from standard input.

Output
For the input test case, your program will output one line containing the number of the

Fibonacci sequence.

The output must be written to standard output.

Example 1
Input

11

Output for the input

89

Example 2
Input

20

Output for the input

6765

