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Abstract

In this paper, we present an adaptive gproach
to the solution of an analyticdly solvable
problem. We gplied a Genetic Algorithm to find
the best variation of a projedile’s velocity
orientation, in order to optimize the needed time
and predsion for one missle to find a mobile
target. At the end of this work, the obtained
resultsindicated agood performance of the G.A.
compared to conventional methods.

1) Introduction

To solve a problem involving chaos
without using chaos, even the fastest computers
would require exponentialy long programs or
run times. However, a wmputer program can
use daos ( controlled randomness) to rapidly
generate solutions whose validity can be dedked
quickly, mimicking nature's tednique for
solving problems in evolution [Halliday 96)].
Genetic Algorithms is an approadh in
evolutionary computing that handles the idea
shown above.

This paper presents a proposal to solve a
problem which solution is known and
determinable by analytic methods, through the
utili zation of G.A. paradigm, with intent to
produce parameters that will allow performance
comparison between the two approadies. This
proposal is justified by the large versatility that
the gplication of G.A. has presented in the

solution of several kinds of problems, as e in
[Ribeiro 94, [Davis 91] and [Collins 96].

2) TheProblem

The seleded problem for the analysis was
the antrol of the trajedory of amateria point in
a 3-dimensional space This choice was based in
the fad that the problem has an analytic solution
and it is of easy understanding. In this work, we
particularized the problem to the cae in which a
projedile must find a mobile target, that
describes a pre-setted trgedory which is
unknown by the projedile.

The problem was formalized in one
differential equations gystem and simulated via
numericd integration. At ead iteration, the
system recdculates the values of acceeration,
velocity and position of the two material points
and draws the adua state of the system in a 3-
dimensiona space projeded on the screen
through a synthetic camera. The resulting force
over the projedile is cdculated taking the
following components into acount:

Drag force exerted bytheair: D = %2 CpAv?2
Weight force: Ry = m.g
Propulsionforce Fp = congstant
Buoyant Force: Fe= gpV
C Drag coefficient
p Air Density (1.21 kg/m®)
A Area of the plain sedion perpendicular to the direcion
of the velocity vedor
Module of the velocity vedor
Massof the projedile
Gravity accderation (9.81m/s)
Volume of fluid dsplaced bythe body
All unitsarein the International System. .

<@ 3g<

Fig. 1 - Theinvolved forces
Asauming that the velocity of a projedile
is commonly found in the range between two
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and four times the speed of the sound, we made
some smplificaions considering its module
constant, in order to improve the computational
performance of the system. So, the resultant
acceeration influences centripetally over the
velocity, changing only its diredion and not the
module. The module’'s variation of 8 and ¢
angles cannot exceal the limit of 1/16 radians
(=171°).

3) Characteristics of the Developed System

Fig. 2 - Main screen

3.1 Genetic Representation of the Potential
Solutions of the Problem

The binary number coding was chosen to
represent the potential solutions of the proposed
problem due to its properties of smilarity to the
biologicd chromosome, making easer the
building of genetic operators. The size of the
implemented chromosome was of sixteen hits,
where the most and less $gnificant bytes
represent the respedive angular changes in the
components of the velocity in a determined
interval dt, as sowninfigure 3.

The cdculation presented in the
following figure can be interpreted as a
normalization of the A and B values, followed by
a multiplication that represents the width of the
variation band; and the subtradions that cuts the
band in symmetric values between the limits of |
- TU16to TV16].

Chromosome:
[01011010
Most significant byte:
A=[0101101Qb=[90]d

10101110

Less sgnificant byte :
B=[1010111Q0b=[174]d

A m
A= ——X——— = -0577

X =
255 8 16
B
Ap= X —7— = 1541
255 8 16

Fig. 3 - Chromosome deading

To generate the initial population, we set
the state of al bits randomly, using an internal
random number generator.

3. 2 FitnessFunction

The fitness of a dromosome was
evaluated by cdculating the variation of the
component of the velocity vedor over the ais
that touches the two material pointsin space To
eathh chromosome, the G.A. cdculates the
fitnessas the variation of the Euclidean distance
between the projedile and the target, at the
timest and t+dt.

Target
(Fixed)

X 't+dt

X% Hitness

z

Fig. 4 - Fitnesscalculation
3.3 Genetic Operators

The implemented G.A. uses a variant of
the dassc one-point crossover. In this method,
two points are seleded randomly, one in eah
byte, where the ait, exchange and paste ae
made, recombining the diromosomes.



The angles 6 and ¢, which are
represented respectively by the most and less
significant bytes, remain independent between
themselves, since the genetic operators
transform each one individually.

The choose of parent chromosomes is
made through the roulette whed [Davis 91]
method, where the probability of a chromosome
to be selected is proportiona to its fitness. Using
the elitism method, the new generation will be
formed by the individuals of best fitness of the
previous generation and their direct offspring.

Over this new  population  of
chromosomes is applied a single-bit mutation
operator, where the selected bit is changed
through a simple probabilistic test. For each bit
inside a chromosome, one random number is
generated inside the unitary interva and, if
above the probabilistic rate of mutation, operates
the alteration over the corresponding hit.

3.4 Used Parameters

During the implementation phase, some
smple tests were made in order to find
appropriate values to the parameters, restricting
the covered interval to an optimal solution. To
optimize the time/precision cost, the number of
individuals at the population was set to thirty-
two individuals for each generation.

The number of needed generations for
the projectile to find the target changes
according with the parameters defined by the
user. The maximum limit of generations was set
to one thousand between the begin of the motion
and the target hitting.

By the physical limitations of a high-
speed projectile, we assumed that the
acceleration vector would change the velocity in
order to change only its orientation. The limit set
to this variation was in the range between -1716
to 1/16.

5) Obtained Results

To validate the experiment, we built a set
of graphics, obtained from a systematic variation
in some involved parameters.
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Fig. 5 - Average iterations to hit the target versus
the mutation percentile used

Step: 0,01

The graph of figure 5 was plot to
evaluate the mutation percentile. Through the
analysis of the results, we can perceive that the
number of necessary iterations is smaller in the
range among 0.1 and 0.3.
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Fig. 6 - Average iterations to hit the target versus
missile velocity, using G.A.

Comparing the graphs 6 and 7, we
conclude that there is not a significant detriment
in the performance, in respect to number of
iterations between G.A. and the conventiond
method.
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Fig. 7 - Average iterations to hit the target versus missle
velocity, using conventional methods.

6 ) ResultsInterpretation

Through the analysis of obtained resullts,
we can infer:

* thereisaoptimal value for the mutation rate,
just changing from problem to problem;

* the problem's lution are very sensible to the
initial  conditions, which improves the
utili zation of adaptive methods, like G.A.

» the cmplexity of the target trgjedories has
not an influencein the relative performance of
the two methods. They have a smilar
performance for the same trajedory.

7) Future Improvements

7.1 Chromosome ading using red numbers

The innately variable involved in the
problem (' continuous angles ), invokes the use
of red numbers to represent the diromosome, in
the way to prevent the process delay of coding
and dewding needed by the binary
representation. In order to do this, it is necessary
to perform complete modificaion in the
operators ( crosover and mutation ).

7.2 Cooperative and Co-Evolutive Approach

In a operative ad co-evolutive
approadh, eadr variable is coded in an
independent chromosome, evolving in different
populations, in parallel. This approach could be

interesting in our model, which use two
independence variables coded in the same
chromosome.

8) Conclusions

At the end of the result analysis phase,
we can observe that, athough the Genetic
Algorithm has a high computationa cost, the
quality of generated solutions is quite nea of the
obtained results by the conventiona methods.
To utilize an analyticd method, we will usually
demand a high knowledge ad a rigid
formalizing of the problem, plus a big predsion
and a high velocity to compute the results, which
can mot be dways acceted. Based in this
assrtion, we can conclude that the gplication
of Genetic Algorithm in problems that have an
analytica solution is viable in a large variety of
cases, and could be mnsidered a generic method
for optimization problems.
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