
Fault Tolerant Software Fault Tolerant Software 

Prof. Raul Ceretta Nunes

UFSM



fevereiro de 07 Raul Ceretta Nunes 2

IntroductionIntroduction

HW is very reliable and its reliability 
continues to improve with time

SW is not so reliable

Making a system FT to faults in software is 
a desirable goal

Software faults is always design faults

FT software



fevereiro de 07 Raul Ceretta Nunes 3

Fault Tolerance SoftwareFault Tolerance Software

Used for detecting design errors

Static — N-Version programming

Dynamic 

�Detection and Recovery

�Recovery blocks: backward error recovery

�Exceptions: forward error recovery



fevereiro de 07 Raul Ceretta Nunes 4

NN--Version ProgrammingVersion Programming

Design diversity

The independent generation of N (N > 2) 

functionally equivalent programs from the same 

initial specification

No interactions between groups

The programs execute concurrently with the 

same inputs and their results are compared by a 

driver process

The results (VOTES) should be identical 

(considering the consensus result)



fevereiro de 07 Raul Ceretta Nunes 5

NN--Version ProgrammingVersion Programming

Version 2Version 1 Version 3

Driver

vote

status

vote
vote

status

status



fevereiro de 07 Raul Ceretta Nunes 6

Vote ComparisonVote Comparison

To what extent can votes be compared?

Text or integer arithmetic will produce 
identical results

Real numbers => different values

Need inexact voting techniques



fevereiro de 07 Raul Ceretta Nunes 7

Consistent Comparison ProblemConsistent Comparison Problem

T3

> Tth

no

P3

> Pth

T1

> Tth

yes

P1

> Pth

yes

V1

T2

> Tth

yes

P2

no

> Pth

V2 V3

Each version 
will produce a 

different but 

correct result

Even if use inexact 

comparison techniques,

the problem occurs



fevereiro de 07 Raul Ceretta Nunes 8

NN--version programming depends on version programming depends on 
Initial specification — The majority of software faults stem from 

inadequate specification? A specification error will manifest itself in 

all N versions of the implementation

Independence of effort — Experiments produce conflicting results. 

Where part of a specification is complex, this leads to a lack of 

understanding of the requirements. If these requirements also refer 

to rarely occurring input data, common design errors may not be 

caught during system testing

Adequate budget — The predominant cost is software. A 3-version 

system will triple the budget requirement and cause problems of 

maintenance. Would a more reliable system be produced if the 

resources potentially available for constructing an N-versions were 

instead used to produce a single version?

military versus civil avionics industry



fevereiro de 07 Raul Ceretta Nunes 9

Software Dynamic RedundancySoftware Dynamic Redundancy

It is organized on four phases:

error detection — no fault tolerance scheme can be utilised 

until the associated error is detected

damage confinement and assessment — to what extent has 

the system been corrupted? The delay between a fault 

occurring and the detection of the error means erroneous 
information could have spread throughout the system

error recovery — techniques should aim to transform the 
corrupted system into a state from which it can continue its 

normal operation (perhaps with degraded functionality)

fault treatment and continued service — an error is a 

symptom of a fault; although damage repaired, the fault may 
still exist



fevereiro de 07 Raul Ceretta Nunes 10

Error DetectionError Detection

Environmental detection

�hardware — e.g. illegal instruction

�O.S/RTS — null pointer

Application detection

�Replication checks

�Timing checks

�Reversal checks

�Coding checks

�Reasonableness checks

�Structural checks

�Dynamic reasonableness check



fevereiro de 07 Raul Ceretta Nunes 11

Damage Confinement and Damage Confinement and 

AssessmentAssessment

Damage assessment is closely related to damage 
confinement techniques used

Damage confinement is concerned with structuring the 
system so as to minimise the damage caused by a faulty 

component (also known as firewalling)

Modular decomposition provides static damage 

confinement; allows data to flow through well-define 
pathways

Atomic actions provides dynamic damage confinement; 

they are used to move the system from one consistent 

state to another



fevereiro de 07 Raul Ceretta Nunes 12

Error RecoveryError Recovery

Probably the most important phase of any fault-tolerance 
technique 

Two approaches: forward and backward

Forward error recovery continues from an erroneous 

state by making selective corrections to the system state

This includes making safe the controlled environment 

which may be hazardous or damaged because of the 

failure

It is system specific and depends on accurate 

predictions of the location and cause of errors (i.e, 
damage assessment)

Examples: redundant pointers in data structures and the 
use of self-correcting codes such as Hamming Codes



fevereiro de 07 Raul Ceretta Nunes 13

Backward Error Recovery (BER)Backward Error Recovery (BER)

BER relies on restoring the system to a previous safe state 
and executing an alternative section of the program

This has the same functionality but uses a different 
algorithm (c.f. N-Version Programming) and therefore no 

fault

The point to which a process is restored is called a 
recovery point and the act of establishing it is termed 

checkpointing (saving appropriate system state) 

Advantage: the erroneous state is cleared and it does not 

rely on finding the location or cause of the fault

BER can, therefore, be used to recover from unanticipated 

faults including design errors

Disadvantage: it cannot undo errors in the environment!



fevereiro de 07 Raul Ceretta Nunes 14

The Domino EffectThe Domino Effect

With concurrent processes that interact with each other, 
BER is more complex. Consider:

R22

R21

R13

R12

R11

IPC4

IPC3

IPC2

IPC1

E
x
ec

u
ti

o
n
 t

im
e

Terror

P1 P2

If the error is detected in 

P1 rollback to R13

If the error is detected in 

P2 ?



fevereiro de 07 Raul Ceretta Nunes 15

Fault Treatment and Continued Fault Treatment and Continued 

ServiceService
ER returned the system to an error-free state; however, the error 

may recur; the final phase of F.T. is to eradicate the fault from the 
system

The automatic treatment of faults is difficult and system specific

Some systems assume all faults are transient; others that error 
recovery techniques can cope with recurring faults

Fault treatment can be divided into 2 stages: fault location and 
system repair

Error detection techniques can help to trace the fault to a 

component. For, hardware the component can be replaced

A software fault can be removed in a new version of the code

In non-stop applications it will be necessary to modify the 
program while it is executing!



fevereiro de 07 Raul Ceretta Nunes 16

The Recovery Block approach to The Recovery Block approach to 

FTFT
Language support for BER

At the entrance to a block is an automatic recovery point and 

at the exit an acceptance test

The acceptance test is used to test that the system is in an 

acceptable state after the block’s execution (primary module)

If the acceptance test fails, the program is restored to the 

recovery point at the beginning of the block and an 

alternative module is executed

If the alternative module also fails the acceptance test, the 

program is restored to the recovery point and yet another 
module is executed, and so on

If all modules fail then the block fails and recovery must take 
place at a higher level



fevereiro de 07 Raul Ceretta Nunes 17

Recovery Block SyntaxRecovery Block Syntax

Recovery blocks can be nested

If all alternatives in a nested recovery block fail the 

acceptance test, the outer level recovery point will be 

restored and an alternative module to that block executed

ensure <acceptance test>

by

<primary module>

else by

<alternative module>

else by

<alternative module>

...

else by

<alternative module>

else error



fevereiro de 07 Raul Ceretta Nunes 18

Recovery Block MechanismRecovery Block Mechanism

Establish

Recovery

Point

Any

Alternatives

Left?

Evaluate

Acceptance

Test

Restore

Recovery

Point

Execute

Next

Alternative

Discard

Recovery

Point

Fail Recovery Block

Yes

No

Pass

Fail



fevereiro de 07 Raul Ceretta Nunes 19

Example: Solution to Differential EquationExample: Solution to Differential Equation

Explicit Kutta Method fast but inaccurate when equations are 
stiff

Implicit Kutta Method more expensive but can deal with stiff 
equations

The above will cope with all equations

It will also potentially tolerate design errors in the Explicit 

Kutta Method if the acceptance test is flexible enough

ensure Rounding_err_has_acceptable_tolerance

by

Explicit Kutta Method

else by

Implicit Kutta Method

else error



fevereiro de 07 Raul Ceretta Nunes 20

Nested Recovery BlocksNested Recovery Blocks
ensure rounding_err_has_acceptable_tolerance

by

ensure sensible_value 

by

Explicit Kutta Method

else by

Predictor-Corrector K-step Method

else error

else by

ensure sensible_value 

by

Implicit Kutta Method 

else by

Variable Order K-Step Method

else error

else error



fevereiro de 07 Raul Ceretta Nunes 21

The Acceptance TestThe Acceptance Test

The acceptance test provides the error detection mechanism which 
enables the redundancy in the system to be exploited

The design of the acceptance test is crucial to the efficacy of the RB 
scheme

There is a trade-off between providing comprehensive acceptance 
tests and keeping overhead to a minimum, so that fault-free 
execution is not affected

Note that the term used is acceptance not correctness; this allows a 
component to provide a degraded service

All the previously discussed error detection techniques discussed 
can be used to form the acceptance tests

However, care must be taken as a faulty acceptance test may lead
to residual errors going undetected



fevereiro de 07 Raul Ceretta Nunes 22

NN--Version Programming Version Programming vsvs Recovery Recovery 

BlocksBlocks

Static (NV) versus dynamic redundancy (RB) 

Design overheads — both require alternative algorithms, 

NV requires driver, RB requires acceptance test

Runtime overheads — NV requires N * resources, RB 

requires establishing recovery points

Diversity of design — both susceptible to errors in 

requirements

Error detection — vote comparison (NV) versus 
acceptance test (RB)

Atomicity — NV vote before it outputs to the 
environment, RB must be structure to only output 

following the passing of an acceptance test



fevereiro de 07 Raul Ceretta Nunes 23

Dynamic Redundancy and Dynamic Redundancy and 

ExceptionsExceptions
An exception can be defined as the occurrence of an error

Bringing an exception to the attention of the invoker of the 

operation which caused the exception, is called raising (or 
signally or throwing) the exception

The invoker's response is called handling (or catching) the 

exception

Exception handling is a forward error recovery

mechanism, as there is no roll back to a previous state; 
instead control is passed to the handler so that recovery 

procedures can be initiated

However, the exception handling facility can be used to 

provide backward error recovery



fevereiro de 07 Raul Ceretta Nunes 24

ExceptionsExceptions

Exception handling can be used to:

cope with abnormal conditions arising in 
the environment

enable program design faults to be 
tolerated

provide a general-purpose error-detection 
and recovery facility



fevereiro de 07 Raul Ceretta Nunes 25

Ideal FaultIdeal Fault--Tolerant ComponentTolerant Component
Interface

Exception

Failure

Exception

Interface

Exception

Failure

Exception

Service

Request

Normal

Response

Service

Request

Normal

Response

Normal Activity Exception Handlers

Return to Normal 

Service

Internal 

Exception



fevereiro de 07 Raul Ceretta Nunes 26

SummarySummary

N-version programming: the independent generation of N 
(where N >= 2) functionally equivalent programs from the 

same initial specification

Based on the assumptions that a program can be 

completely, consistently and unambiguously specified, and 

that programs which have been developed independently
will fail independently

Dynamic redundancy: error detection, damage confinement 
and assessment, error recovery, and fault treatment and 

continued service



fevereiro de 07 Raul Ceretta Nunes 27

SummarySummary

With backward error recovery, it is necessary for 
communicating processes to reach consistent recovery 

points to avoid the domino effect 

For sequential systems, the recovery block is an 

appropriate language concept for BER

Although forward error recovery is system specific, 
exception handling has been identified as an appropriate 

framework for its implementation

The concept of an ideal fault tolerant component was 

introduced which used exceptions



fevereiro de 07 Raul Ceretta Nunes 28

1. Other 1. Other UniprocessUniprocess ApproachesApproaches

Deadline Mechanism

Distributed Recovery Block

Data Diversity



fevereiro de 07 Raul Ceretta Nunes 29

1.1. Deadline Mechanism1.1. Deadline Mechanism

Based on recovery-block mechanism

slack time = response-time – maximum 
execution time of the alternate algorithm

Used on real-time systems to avoid timing 
failures

service service-name

within response-period

by

primary algorithm

else by

alternate algorithm

end



fevereiro de 07 Raul Ceretta Nunes 30

1.2. Distributed Recovery Block 1.2. Distributed Recovery Block -- DRBDRB

Meant to avoid transient hardware errors, 
because acceptance-test does not indicate the 
cause of the error

Key idea: to distribute RB and AT on different 
nodes and execute them concurrently.

If the primary fails, it sends a notice to the 
backup node, that forward its result. The primary 
erroneous state can also be trigged by backup 
from a watchdog timer. 

If the primary succeed, it also sends a notice to 
the backup, that does not forward its result.



fevereiro de 07 Raul Ceretta Nunes 31

1.3. Data Diversity1.3. Data Diversity

Meant as a less expensive alternative to 
design diversity

Depends on the data re-expression, a 
generation of logically equivalent data sets

Two structures: 

�Retry block

�N-copy programming



fevereiro de 07 Raul Ceretta Nunes 32

1.3.1. Retry block1.3.1. Retry block

Execute
Algorithm

Re-express
Data

Valid
Output?

Deadline
Expired? “error”

yesyes no

no

System
Input

System
Output



fevereiro de 07 Raul Ceretta Nunes 33

1.3.2. N1.3.2. N--copy programmingcopy programming

Re-express
Data

System
Input

Copy 1

Copy 1

Copy 1

Voter

System
Output



fevereiro de 07 Raul Ceretta Nunes 34

2. Backward Recovery in Concurrent 2. Backward Recovery in Concurrent 

SystemsSystems

Simple method to support design faults in 
a concurrent system

�Reset the process to some previous consistent 

state and reexecute it (it may not fail because 
on new time execution the environment is 

different)

�Only error detection capabilities are required

�This approach works to transient faults



fevereiro de 07 Raul Ceretta Nunes 35

2.1 Domino Effect2.1 Domino Effect

Rollback is employed in recovery blocks 
for error recovery

A forced rollback may be needed on rolling 
back a process in a concurrent system

Uncontrolled rollbacks may cause a 
domino effect, i.e., rollback to first 
consistent point



fevereiro de 07 Raul Ceretta Nunes 36

A consistent and an Inconsistent A consistent and an Inconsistent 

recovery linerecovery line

inconsistent lineconsistent line

Inicial
consistent

state

P1

P2

consistent
points



fevereiro de 07 Raul Ceretta Nunes 37

The domino effectThe domino effect

Initial 
consistent

state

P1

P2

consistent
points on P2

Domino effect reason: recovery points on different processes are
not coordinated with communication commands. 



fevereiro de 07 Raul Ceretta Nunes 38

2.2. Conversations2.2. Conversations

A language construct.

It prevents domino effect.

In a conversation a process can only 
communicates with another process in the same 
conversation.

If any process fails an acceptance test or 
otherwise detects na exception, every process in 
the conversation performs a rollback to its 
recovery point, established on entry to the 
conversation, and uses an alternate algorithm.

The set of processes taking part in a 
conversation are fixed.



fevereiro de 07 Raul Ceretta Nunes 39

2.3. FT2.3. FT--ActionAction

An atomic action

A planned atomic action – an one that is 
planned during design and supported by some 
run-time mechanism

A basic atomic action (indivisible)
�A recoverable atomic action (indivisible and recoverable, 

ou all-or-nothing) is not suitable

An atomic action where different recovery 
techniques, like exception handling, could be 
used

An atomic action used on conversation or 
recovery block to provide recovery and FT



fevereiro de 07 Raul Ceretta Nunes 40

Conversations using monitorsConversations using monitors



fevereiro de 07 Raul Ceretta Nunes 41

Using Distributed FTUsing Distributed FT--ActionAction



fevereiro de 07 Raul Ceretta Nunes 42

3. Forward Recovery in Concurrent 3. Forward Recovery in Concurrent 

SystemsSystems



fevereiro de 07 Raul Ceretta Nunes 43

3.1 Exception Resolution3.1 Exception Resolution



fevereiro de 07 Raul Ceretta Nunes 44

Exception Handling with FTException Handling with FT--ActionAction


