
Clock Synchronization Clock Synchronization

AlgorithmsAlgorithms
Michael WangMichael Wang

CSC 569CSC 569

Fall 2002Fall 2002

Presentation OutlinePresentation Outline

�� BackgroundBackground

�� Deterministic AlgorithmsDeterministic Algorithms

�� Probabilistic AlgorithmsProbabilistic Algorithms

�� New ImplementationNew Implementation

�� ReferencesReferences

Why Clock Synchronization?Why Clock Synchronization?

�� Independent clocksIndependent clocks

�� Different timesDifferent times

�� DriftDrift

�� Logical clocks don’t workLogical clocks don’t work

�� Need real timeNeed real time

Applications of Clock Applications of Clock

SynchronizationsSynchronizations

�� Email serversEmail servers

�� Measure duration of two events Measure duration of two events

on two nodeson two nodes

�� Buying and selling stocksBuying and selling stocks

ProblemsProblems

�� Different timesDifferent times

�� Different speedsDifferent speeds

�� Delay in communicationDelay in communication

�� Faulty clocksFaulty clocks

Example of Not Being Example of Not Being

SynchronizedSynchronized

�� Surveyed 5,722 hosts and Surveyed 5,722 hosts and

gatewaysgateways

�� 60% were off by > 1 minute60% were off by > 1 minute

�� 10% were off by > 13 minutes10% were off by > 13 minutes

�� A few were off by > 2 yearsA few were off by > 2 years

Types of SynchronizationTypes of Synchronization

InternalInternal

�� Processor Processor

clocks are close clocks are close

to each otherto each other

�� For measuring For measuring

duration within duration within

systemsystem

�� Not externally Not externally

synchronizedsynchronized

ExternalExternal

�� Processor Processor

clocks are close clocks are close

to real timeto real time

�� For realFor real--time time

systemssystems

�� Also internally Also internally

synchronizedsynchronized

Problem DefinitionProblem Definition

�� n number of clocksn number of clocks

�� CCii(t(t)) –– reading of a clock reading of a clock CCii at real at real

time ttime t

�� ccii(T(T)) –– real time when the real time when the ii--thth clock clock

reaches time Treaches time T

�� Drift rate bound: |Drift rate bound: |d(Cd(Cii/dt/dt)) –– 1| < 1| < ρρ

�� Sync bound: Sync bound: ||CCii(t(t)) –– CCjj(t(t)| <=)| <= ββ

�� Clock can only change small amount Clock can only change small amount

at each resynchronizationat each resynchronization

Problem DefinitionProblem Definition

�� BasicBasic requirementsrequirements
�� S1S1. At . At anyany time time thethe valuevalue of of allall thethe

nonfaultlynonfaultly processorsprocessors’ ’ clocksclocks mustmust
bebe approximatelyapproximately equalequal. . ThatThat isis

||CCii(t(t)) –– CCjj(t(t)| <=)| <= ββ

�� S2S2. . ThereThere is a is a smallsmall boundbound ∑∑ onon
thethe amountamount byby whichwhich a a nonfaultlynonfaultly
processorprocessor’’s s clockclock is is changedchanged
duringduring eacheach resynchronizationresynchronization..

Types of AlgorithmsTypes of Algorithms

DeterministicDeterministic

�� Require Require

assumptions assumptions

about message about message

delaysdelays

�� Synchronization Synchronization

and bounds are and bounds are

guaranteedguaranteed

ProbabilisticProbabilistic

�� No assumptions No assumptions

about message about message

delaysdelays

�� Guarantees Guarantees

precision with precision with

probabilityprobability

Deterministic Clock Deterministic Clock

Synchronization AssumptionsSynchronization Assumptions

�� maxmax = maximum message delay= maximum message delay

�� minmin = minimum message delay= minimum message delay

�� nn = # of clocks= # of clocks

�� Closeness of synchronizationCloseness of synchronization

= (= (maxmax –– minmin)(1)(1 –– 1 / 1 / nn))

WelchWelch--Lynch Algorithm Lynch Algorithm

AssumptionsAssumptions

�� # of faulty clocks < n/3, or n=3f+1# of faulty clocks < n/3, or n=3f+1

�� Hardware clock is never changed:Hardware clock is never changed:

C(tC(t) =) = H(tH(t) +) + CORR(tCORR(t))

�� Initially all clocks are synchronized:Initially all clocks are synchronized:

|c|cii(T(T00)) –– ccjj(T(T00)| <)| < ββ

�� Message delay:Message delay:

[[δδ -- εε, , δδ + + εε]]

Algorithm OverviewAlgorithm Overview

�� Executes in roundsExecutes in rounds

�� Collects arrival times of messages Collects arrival times of messages

from other processes until its local from other processes until its local

clock reaches Tclock reaches Tii

�� Broadcast its local clock valueBroadcast its local clock value

�� Continues to receive messages until Continues to receive messages until

a maximum timea maximum time

�� Changes the CORR functionChanges the CORR function

�� Starts another roundStarts another round

Pseudo CodePseudo Code
set-timer(T0)

do forever
// loop until timer Ti breaks
while receive(m, k) do

ARR[k] = NOW

T := NOW
broadcast(T)
set-timer(T + (1 + ρ) * (β + δ + ε))

// loop until timer breaks
while receive(m, k) do

ARR[k] = NOW

AV := mid(reduce(ARR))
ADJ := T + δ - AV
CORR := CORR + ADJ
set-timer(T + ∆T)

enddo

Jalote, P. Fault Tolerance in Distributed Systems, p. 95, 1994.

Wait TimeWait Time

set-timer(T + (1 + ρ) * (β + δ + ε))

� T = now

� β = bound on times on other
processes

� δ + ε = maximum message delay

� ρ = local drift rate

� If a message is not received from
a process within this time, then
that process is faulty.

Changing the CORR functionChanging the CORR function

AV := mid(reduce(ARR))

�� Simple averaging function Simple averaging function
doesn’t work because of faulty doesn’t work because of faulty
clocksclocks

�� Since there are at most n/3 Since there are at most n/3
faulty clocks, the reduce faulty clocks, the reduce
function gets rid of the top 1/3 function gets rid of the top 1/3
and bottom 1/3 of the values.and bottom 1/3 of the values.

�� Take the middle value.Take the middle value.

This Works!This Works!

�� Process i sent message at TProcess i sent message at Tii

�� Process j received message at Process j received message at

AVAV

�� The average message delay is The average message delay is δδ

�� Difference between clock at i Difference between clock at i

and clock at j is:and clock at j is:

(T(Tii + + δδ)) –– AVAV

�� TTii == T== T

ParametersParameters

�� ρρ, , δδ, and , and εε are fixedare fixed

�� ββ and and ∆∆T can be configuredT can be configured

�� Smaller Smaller ββ means clocks closer means clocks closer

to each otherto each other

�� Smaller Smaller ∆∆T means clocks T means clocks

resynchronize more oftenresynchronize more often

�� Also means more messagesAlso means more messages

BoundsBounds

�� ∆∆T <= T <= ββ / 4/ 4ρρ -- εε / / ρρ -- ρρ((ββ + + δδ + + εε))

-- 22ββ -- δδ -- 22εε

�� If If ∆∆T is fixed: T is fixed: ββ ≈≈ 44εε + 4+ 4ρ∆ρ∆TT

�� ADJ <= (1 + ADJ <= (1 + ρρ)()(ββ + + εε) +) + ρδρδ

Optimization to theOptimization to the

WelchWelch--Lynch AlgorithmLynch Algorithm

while receive(m, k) do
ARR[k] = NOW

AV := mid(reduce(ARR))

� The reduce function needs to sort

the array, and the cut off the top 1/3

and bottom 1/3 of the array.

� Wastes at least log n number of

computations

Optimization to theOptimization to the

WelchWelch--Lynch AlgorithmLynch Algorithm

for i := 0; receive(m, k); i := i + 1
ARR[i] = NOW

AV := ARR[i / 2]

�� No need to sortNo need to sort

�� No need to waste timeNo need to waste time

New Pseudo CodeNew Pseudo Code
set-timer(T0)

do forever
// loop until timer breaks
for i := 0; receive(m, k); i := i + 1

ARR[i] = NOW

T := NOW
broadcast(T)
set-timer(T + (1 + ρ) * (β + δ + ε))

// loop until timer breaks
for i := i; receive(m, k); i := i + 1

ARR[i] = NOW

AV := ARR[i / 2]
ADJ := T + δ - AV
CORR := CORR + ADJ
set-timer(T + ∆T)

enddo

Probabilistic Clock Probabilistic Clock

Synchronization AlgorithmsSynchronization Algorithms

�� Does not guarantee Does not guarantee

synchronizationsynchronization

�� Uses probabilityUses probability

�� Does not require assumptions Does not require assumptions

about message delayabout message delay

�� Can achieve closer Can achieve closer

synchronization between clockssynchronization between clocks

Cristian’sCristian’s Algorithm OverviewAlgorithm Overview

�� ServerServer--client modelclient model

�� Server is synchronized with Server is synchronized with

external real timeexternal real time

�� Clients query server for time to Clients query server for time to

synchronize.synchronize.

Cristian’sCristian’s Algorithm OverviewAlgorithm Overview

�� minmin = minimum time to prepare, = minimum time to prepare,

transmit, and receive a messagetransmit, and receive a message

�� When a process j, wants to know the When a process j, wants to know the

clock at another process i, it sends a clock at another process i, it sends a

query to i.query to i.

�� Process i replies to the query.Process i replies to the query.

�� Process j times the round trip delay.Process j times the round trip delay.

�� Process j uses round trip delay, Process j uses round trip delay, minmin, ,

and clock value reported by i to and clock value reported by i to

synchronize.synchronize.

Server Pseudo CodeServer Pseudo Code

// run forever because it’s a daemon
do forever

// receive a query from process k
receive(q, k)

// reply k with the local current time
send(NOW, k)

enddo

Client Pseudo CodeClient Pseudo Code

// send query to process s (server)
send(q, s)

// get start time
T1 := NOW

// wait for process s to reply
receive(T, s)

// get end time
T2 := NOW

// set new time
D := (T2 – T1) / 2
C := T + D(1 + 2ρ) – min*ρ

This Works!This Works!

�� At receiving reply, the minimum At receiving reply, the minimum

real time >= T + min(1 real time >= T + min(1 -- ρρ))

�� The maximum real time <=The maximum real time <=

T + 2D(1 + 2T + 2D(1 + 2ρρ)) –– min(1 + min(1 + ρρ))

(Demonstrate)(Demonstrate)

�� Average isAverage is

T + D(1 + 2T + D(1 + 2ρρ)) –– min*min*ρρ

How is it Probabilistic?How is it Probabilistic?

�� If a process wants a specific If a process wants a specific
precision precision εε, then it must discard , then it must discard
all messages with roundall messages with round--trip trip
delay greater than 2U:delay greater than 2U:
U = (1 U = (1 -- 22ρρ)()(εε + min)+ min)

�� It is probabilistic because it can It is probabilistic because it can
keep requesting but never get keep requesting but never get
one that has roundone that has round--trip delay trip delay
less than or equal to 2U.less than or equal to 2U.

WorkWork--aroundaround

�� Get the minimum of several triesGet the minimum of several tries

�� Get the average of several triesGet the average of several tries

PerformancePerformance

�� Minimum error is 3 * Minimum error is 3 * ρρ * min* min

�� 2 messages for each 2 messages for each

synchronizationsynchronization

�� 2n messages for n processes2n messages for n processes

WelchWelch--Lynch vs. Lynch vs. CristianCristian

�� PeerPeer--toto--peerpeer

�� Need Need

assumptionsassumptions

�� Max error =Max error =

44εε + 4+ 4ρ∆ρ∆TT

�� GuaranteesGuarantees

�� nn22 messagesmessages

�� ServerServer--clientclient

�� No need for No need for

assumptionsassumptions

�� Min error =Min error =

3 * 3 * ρρ * min* min

�� ProbabilityProbability

�� 2n messages2n messages

ReferencesReferences

�� JaloteJalote, P., , P., Fault Tolerance in Distributed SystemsFault Tolerance in Distributed Systems, ,
PrenticePrentice--Hall, Englewood Cliffs, NJ, 1994.Hall, Englewood Cliffs, NJ, 1994.

�� Mills, D.L., “On the Accuracy and Stability of Clock Mills, D.L., “On the Accuracy and Stability of Clock
Synchronized by the Network Time Protocol in the Synchronized by the Network Time Protocol in the
Internet System”.Internet System”.

�� CristianCristian, F., H. , F., H. AghiliAghili, R. Strong, “, R. Strong, “Clock Clock
Synchronization in the Presence of Omission and Synchronization in the Presence of Omission and
Performance Failures, and Processor JoinsPerformance Failures, and Processor Joins”, 1986.”, 1986.

�� DutertreDutertre, B., “, B., “The WelchThe Welch--Lynch Clock Lynch Clock
Synchronization AlgorithmSynchronization Algorithm”, 1998.”, 1998.

