Clock:Synchronization
Algorithms

“Michael Wang
CSC 569 '~

Presentation QOutline

= Background

m Deterministic Algorithms
m Probabilistic Algorithms
= New Implementation

m References

Why Clock Synchronization?

m Independent clocks

m Different times

m Drift

m Logical clocks don’t work
= Need real time

Applications of Clock
Synchronizations

m Email servers

m Measure duration of two events
on two nodes

= Buying and selling stocks

Problems

m Different times

m Different speeds

= Delay in communication
m Faulty clocks

Example of Not Being
Synchronized

m Surveyed 5,722 hosts and
gateways

m 60% were off by > 1 minute
m 10% were off by > 13 minutes
m A few were off by > 2 years

Types of Synchronization

Internal External
m Processor m Processor
clocks are close clocks are close
to each other to real time
= For measuring m For real-time
duration within systems
system = Also internally
= Not externally synchronized

synchronized

Problem Definition

= n number of clocks

m C(t) —reading of a clock C, at real
time t

m C(T) — real time when the iI-th clock
reaches time T

m Drift rate bound: |d(C/dt) —1| <p

= Sync bound: Gi(t) — CGi(t)| <=P

m Clock can only change small amount
at each resynchronization

Problem Definition

m Basic requirements

e S1. At any time the value of all the
nonfaultly processors’ clocks must
be approximately equal. That is

IGi(1) = Gi(t)] <=

e S2. There is a small bound > on
the amount by which a nonfaultly
processor's clock is changed
during each resynchronization.

Types of Algorithms

Deterministic Probabillistic

= Require = No assumptions
assumptions about message
about message delays
delays = Guarantees

m Synchronization precision with
and bounds are probabillity

guaranteed

Deterministic Clock
Synchronization Assumptions

B max = maximum message delay
® Min = minimum message delay
m n = # of clocks

m Closeness of synchronization
= (max—min)(1 -1/ n)

Welch-Lynch Algorithm
Assumptions

= # of faulty clocks < n/3, or n=3f+1

m Hardware clock is never changed:
C(t) = H(t) + CORR(t)

= Initially all clocks are synchronized:
ICi(To) — Ci(To)| < B

= Message delay:

[0-€, 0+ €]

Algorithm QOverview

m Executes in rounds

m Collects arrival times of messages
from other processes until its local
clock reaches T,

m Broadcast its local clock value

m Continues to receive messages until
a maximum time

m Changes the CORR function
m Starts another round

Pseudo Code

set-timer(T,)

do forever _
// loop until timer Ti breaks
while receive(m, k) do
ARR[k] = NO

T := NOW
broadcast(T)
set-timer(T+ (1 +p) *(B+0+¢))

// loop until timer breaks
while receive(m, k) do
ARR[k] = NO

AV = mid(reduce(ARR))
ADJ =T +0-AV
CORR := CORR + ADJ
set-timer(T + AT)

enddo

Jalote, P. Fault Tolerance in Distributed Systems, p. 95, 1994.

Wait Time

set-timer(T+ (1 +p) " (B + 0+ ¢€))

m [= now

= 3 = bound on times on other
processes

® 0 + € = maximum message delay
= p = |local drift rate

m If a message is not received from
a process within this time, then
that process is faulty.

Changing the CORR function

AV = mid(reduce(ARR))

m Simple averaging function
doesn’'t work because of faulty
clocks

m Since there are at most n/3
faulty clocks, the reduce
function gets rid of the top 1/3
and bottom 1/3 of the values.

m [ake the middle value.

This Works!

m Process | sent message at T.

m Process | received message at
AV

m The average message delay is ¢

m Difference between clock at |
and clock at] Is:
(T. + 9) — AV

m [==

Parameters

m P, 0, and ¢ are fixed
= B and AT can be configured

= Smaller f means clocks closer
to each other

= Smaller AT means clocks
resynchronize more often

m Also means more messages

Bounds

m AT <=p/4p-e/p-p(p+0+¢)
-2 -90-2¢

m |f AT is fixed: B = 4¢ + 4pAT

B ADd<=(1 +p)(B +€) + po

Optimization to the
Welch-Lynch Algorithm

while receive(m, k) do
ARR%k] = NOW
AV = mid(reduce(ARR))

= The reduce function needs to sort
the array, and the cut off the top 1/3
and bottom 1/3 of the array.

m Wastes at least log n number of
computations

Optimization to the
Welch-Lynch Algorithm

fori = 0; recelve m, K);1:=1+1
ARRH
AV = AR |/2]

= No need to sort
= No need to waste time

New Pseudo Code
set-timer(T)

do forever
// loop until timer breaks
fori:=0; receive(m,k);i:=1+ 1
ARR]Ji] = NOW

T :=NOW
broadcast(T)
set-timer(T+ (1 +p) *(B+0 +¢))

// loop until timer breaks

fori:=1i;receive(m,k);1:=1+ 1
ARRJ[i] = NOW
AV = ARRJi/ 2

ADJ =T +0-AV

CORR := CORR + ADJ

set-timer(T + AT)
enddo

Probabilistic Clock
Synchronization Algorithms

m Does not guarantee
synchronization

m Uses probability

m Does not require assumptions
about message delay

m Can achieve closer
synchronization between clocks

Cristian’s Algorithm Overview

m Server-client model

m Server is synchronized with
external real time

m Clients query server for time to
synchronize.

Cristian’s Algorithm Overview

® min = minimum time to prepare,
transmit, and receive a message

= When a process j, wants to know the
clock at another process |, it sends a
query to .

m Process i replies to the query.

m Process) times the round trip delay.

m Process | uses round trip delay, min,
and clock value reported by i to
synchronize.

Server Pseudo Code

// run forever because it's a daemon
do forever

// receive a query from process k
receive(q, k)

// reply K with the local current time
send(NOW, k)

enddo

Client Pseudo Code

// send query to process s (server)
send(q, S)

/I get start time
T1 .= NOW

// wait for process s to reply
receive(T, s)

// get end time
T2 .= NOW

// set new time
D:=(T2-T1)/2
C:=T+D(1+2p)—min*p

This Works!

m At receiving reply, the minimum
real time >= T + min(1 - p)

= [he maximum real time <=
T+2D(1 + 2p) —min(1 + p)
(Demonstrate)

m Average is
T+ D(1 +2p)—min®p

How is it Probabilistic?

m |[f a process wants a specific
precision g, then it must discard
all messages with round-trip
delay greater than 2U:

U= (1-2p)(e+ min)

m |t Is probabilistic because it can
keep requesting but never get
one that has round-trip delay
less than or equal to 2U.

Work-around

m Get the minimum of several tries
m Get the average of several tries

Performance

Minimum erroris 3 * p * min

m 2 messages for each
synchronization

m 2n messages for n processes

Welch-Lynch vs. Cristian

m Peer-to-peer m Server-client

= Need = No need for
assumptions assumptions

m Max error = = Min error =

4e + 4pAT 3% p*min
m Guarantees = Probability
® N2 messages m 2n messages

References

m Jalote, P., Fault Tolerance in Distributed Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1994.

= Mills, D.L., “On the Accuracy and Stability of Clock
Synchronized by the Network Time Protocol in the
Internet System”.

m Cristian, F., H. Aghili, R. Strong, “Clock
Synchronization in the Presence of Omission and
Performance Failures, and Processor Joins”, 1986.

m Dutertre, B., “The Welch-Lynch Clock
Synchronization Algorithm”, 1998.

