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Why Clock Synchronization?Why Clock Synchronization?

�� Independent clocksIndependent clocks

�� Different timesDifferent times

�� DriftDrift

�� Logical clocks don’t workLogical clocks don’t work

�� Need real timeNeed real time



Applications of Clock Applications of Clock 

SynchronizationsSynchronizations

�� Email serversEmail servers

�� Measure duration of two events Measure duration of two events 

on two nodeson two nodes

�� Buying and selling stocksBuying and selling stocks



ProblemsProblems

�� Different timesDifferent times

�� Different speedsDifferent speeds

�� Delay in communicationDelay in communication

�� Faulty clocksFaulty clocks



Example of Not Being Example of Not Being 

SynchronizedSynchronized

�� Surveyed 5,722 hosts and Surveyed 5,722 hosts and 

gatewaysgateways

�� 60% were off by > 1 minute60% were off by > 1 minute

�� 10% were off by > 13 minutes10% were off by > 13 minutes

�� A few were off by > 2 yearsA few were off by > 2 years



Types of SynchronizationTypes of Synchronization

InternalInternal

�� Processor Processor 

clocks are close clocks are close 

to each otherto each other

�� For measuring For measuring 

duration within duration within 

systemsystem

�� Not externally Not externally 

synchronizedsynchronized

ExternalExternal

�� Processor Processor 

clocks are close clocks are close 

to real timeto real time

�� For realFor real--time time 

systemssystems

�� Also internally Also internally 

synchronizedsynchronized



Problem DefinitionProblem Definition

�� n number of clocksn number of clocks

�� CCii(t(t) ) –– reading of a clock reading of a clock CCii at real at real 

time ttime t

�� ccii(T(T) ) –– real time when the real time when the ii--thth clock clock 

reaches time Treaches time T

�� Drift rate bound:   |Drift rate bound:   |d(Cd(Cii/dt/dt) ) –– 1| < 1| < ρρ

�� Sync bound: Sync bound: ||CCii(t(t) ) –– CCjj(t(t)| <= )| <= ββ

�� Clock can only change small amount Clock can only change small amount 

at each resynchronizationat each resynchronization



Problem DefinitionProblem Definition

�� BasicBasic requirementsrequirements
�� S1S1. At . At anyany time time thethe valuevalue of of allall thethe

nonfaultlynonfaultly processorsprocessors’ ’ clocksclocks mustmust
bebe approximatelyapproximately equalequal. . ThatThat isis

||CCii(t(t) ) –– CCjj(t(t)| <= )| <= ββ

�� S2S2. . ThereThere is a is a smallsmall boundbound ∑∑ onon
thethe amountamount byby whichwhich a a nonfaultlynonfaultly
processorprocessor’’s s clockclock is is changedchanged
duringduring eacheach resynchronizationresynchronization..



Types of AlgorithmsTypes of Algorithms

DeterministicDeterministic

�� Require Require 

assumptions assumptions 

about message about message 

delaysdelays

�� Synchronization Synchronization 

and bounds are and bounds are 

guaranteedguaranteed

ProbabilisticProbabilistic

�� No assumptions No assumptions 

about message about message 

delaysdelays

�� Guarantees Guarantees 

precision with precision with 

probabilityprobability



Deterministic Clock Deterministic Clock 

Synchronization AssumptionsSynchronization Assumptions

�� maxmax = maximum message delay= maximum message delay

�� minmin = minimum message delay= minimum message delay

�� nn = # of clocks= # of clocks

�� Closeness of synchronizationCloseness of synchronization

= (= (maxmax –– minmin)(1 )(1 –– 1 / 1 / nn))



WelchWelch--Lynch Algorithm Lynch Algorithm 

AssumptionsAssumptions

�� # of faulty clocks < n/3, or n=3f+1# of faulty clocks < n/3, or n=3f+1

�� Hardware clock is never changed:Hardware clock is never changed:

C(tC(t) = ) = H(tH(t) + ) + CORR(tCORR(t))

�� Initially all clocks are synchronized:Initially all clocks are synchronized:

|c|cii(T(T00) ) –– ccjj(T(T00)| < )| < ββ

�� Message delay:Message delay:

[[δδ -- εε, , δδ + + εε]]



Algorithm OverviewAlgorithm Overview

�� Executes in roundsExecutes in rounds

�� Collects arrival times of messages Collects arrival times of messages 

from other processes until its local from other processes until its local 

clock reaches Tclock reaches Tii

�� Broadcast its local clock valueBroadcast its local clock value

�� Continues to receive messages until Continues to receive messages until 

a maximum timea maximum time

�� Changes the CORR functionChanges the CORR function

�� Starts another roundStarts another round



Pseudo CodePseudo Code
set-timer(T0)

do forever
// loop until timer Ti breaks
while receive(m, k) do

ARR[k] = NOW

T := NOW
broadcast(T)
set-timer( T + (1 + ρ) * (β + δ + ε))

// loop until timer breaks
while receive(m, k) do

ARR[k] = NOW

AV := mid( reduce(ARR) )
ADJ := T + δ - AV
CORR := CORR + ADJ
set-timer( T + ∆T)

enddo

Jalote, P. Fault Tolerance in Distributed Systems, p. 95, 1994.



Wait TimeWait Time

set-timer( T + (1 + ρ) * (β + δ + ε))

� T = now

� β = bound on times on other 
processes

� δ + ε = maximum message delay

� ρ = local drift rate

� If a message is not received from 
a process within this time, then 
that process is faulty.



Changing the CORR functionChanging the CORR function

AV := mid( reduce(ARR) )

�� Simple averaging function Simple averaging function 
doesn’t work because of faulty doesn’t work because of faulty 
clocksclocks

�� Since there are at most n/3 Since there are at most n/3 
faulty clocks, the reduce faulty clocks, the reduce 
function gets rid of the top 1/3 function gets rid of the top 1/3 
and bottom 1/3 of the values.and bottom 1/3 of the values.

�� Take the middle value.Take the middle value.



This Works!This Works!

�� Process i sent message at TProcess i sent message at Tii

�� Process j received message at Process j received message at 

AVAV

�� The average message delay is The average message delay is δδ

�� Difference between clock at i Difference between clock at i 

and clock at j is:and clock at j is:

(T(Tii + + δδ) ) –– AVAV

�� TTii == T== T



ParametersParameters

�� ρρ, , δδ, and , and εε are fixedare fixed

�� ββ and and ∆∆T can be configuredT can be configured

�� Smaller Smaller ββ means clocks closer means clocks closer 

to each otherto each other

�� Smaller Smaller ∆∆T means clocks T means clocks 

resynchronize more oftenresynchronize more often

�� Also means more messagesAlso means more messages



BoundsBounds

�� ∆∆T <= T <= ββ / 4/ 4ρρ -- εε / / ρρ -- ρρ((ββ + + δδ + + εε) ) 

-- 22ββ -- δδ -- 22εε

�� If If ∆∆T is fixed: T is fixed: ββ ≈≈ 44εε + 4+ 4ρ∆ρ∆TT

�� ADJ <= (1 + ADJ <= (1 + ρρ)()(ββ + + εε) + ) + ρδρδ



Optimization to theOptimization to the

WelchWelch--Lynch AlgorithmLynch Algorithm

while receive(m, k) do
ARR[k] = NOW

AV := mid( reduce(ARR) )

� The reduce function needs to sort 

the array, and the cut off the top 1/3 

and bottom 1/3 of the array.

� Wastes at least log n number of 

computations



Optimization to theOptimization to the

WelchWelch--Lynch AlgorithmLynch Algorithm

for i := 0; receive(m, k); i := i + 1
ARR[i] = NOW

AV := ARR[i / 2]

�� No need to sortNo need to sort

�� No need to waste timeNo need to waste time



New Pseudo CodeNew Pseudo Code
set-timer(T0)

do forever
// loop until timer breaks
for i := 0; receive(m, k); i := i + 1

ARR[i] = NOW

T := NOW
broadcast(T)
set-timer( T + (1 + ρ) * (β + δ + ε))

// loop until timer breaks
for i := i; receive(m, k); i := i + 1

ARR[i] = NOW

AV := ARR[i / 2]
ADJ := T + δ - AV
CORR := CORR + ADJ
set-timer( T + ∆T)

enddo



Probabilistic Clock Probabilistic Clock 

Synchronization AlgorithmsSynchronization Algorithms

�� Does not guarantee Does not guarantee 

synchronizationsynchronization

�� Uses probabilityUses probability

�� Does not require assumptions Does not require assumptions 

about message delayabout message delay

�� Can achieve closer Can achieve closer 

synchronization between clockssynchronization between clocks



Cristian’sCristian’s Algorithm OverviewAlgorithm Overview

�� ServerServer--client modelclient model

�� Server is synchronized with Server is synchronized with 

external real timeexternal real time

�� Clients query server for time to Clients query server for time to 

synchronize.synchronize.



Cristian’sCristian’s Algorithm OverviewAlgorithm Overview

�� minmin = minimum time to prepare, = minimum time to prepare, 

transmit, and receive a messagetransmit, and receive a message

�� When a process j, wants to know the When a process j, wants to know the 

clock at another process i, it sends a clock at another process i, it sends a 

query to i.query to i.

�� Process i replies to the query.Process i replies to the query.

�� Process j times the round trip delay.Process j times the round trip delay.

�� Process j uses round trip delay, Process j uses round trip delay, minmin, , 

and clock value reported by i to and clock value reported by i to 

synchronize.synchronize.



Server Pseudo CodeServer Pseudo Code

// run forever because it’s a daemon
do forever

// receive a query from process k
receive(q, k)

// reply k with the local current time
send(NOW, k)

enddo



Client Pseudo CodeClient Pseudo Code

// send query to process s (server)
send(q, s)

// get start time
T1 := NOW

// wait for process s to reply
receive(T, s)

// get end time
T2 := NOW

// set new time
D := (T2 – T1) / 2
C := T + D(1 + 2ρ) – min*ρ



This Works!This Works!

�� At receiving reply, the minimum At receiving reply, the minimum 

real time >= T + min(1 real time >= T + min(1 -- ρρ))

�� The maximum real time <=The maximum real time <=

T + 2D(1 + 2T + 2D(1 + 2ρρ) ) –– min(1 + min(1 + ρρ))

(Demonstrate)(Demonstrate)

�� Average isAverage is

T + D(1 + 2T + D(1 + 2ρρ) ) –– min*min*ρρ



How is it Probabilistic?How is it Probabilistic?

�� If a process wants a specific If a process wants a specific 
precision precision εε, then it must discard , then it must discard 
all messages with roundall messages with round--trip trip 
delay greater than 2U:delay greater than 2U:
U = (1 U = (1 -- 22ρρ)()(εε + min)+ min)

�� It is probabilistic because it can It is probabilistic because it can 
keep requesting but never get keep requesting but never get 
one that has roundone that has round--trip delay trip delay 
less than or equal to 2U.less than or equal to 2U.



WorkWork--aroundaround

�� Get the minimum of several triesGet the minimum of several tries

�� Get the average of several triesGet the average of several tries



PerformancePerformance

�� Minimum error is 3 * Minimum error is 3 * ρρ * min* min

�� 2 messages for each 2 messages for each 

synchronizationsynchronization

�� 2n messages for n processes2n messages for n processes



WelchWelch--Lynch   vs.  Lynch   vs.  CristianCristian

�� PeerPeer--toto--peerpeer

�� Need Need 

assumptionsassumptions

�� Max error =Max error =

44εε + 4+ 4ρ∆ρ∆TT

�� GuaranteesGuarantees

�� nn22 messagesmessages

�� ServerServer--clientclient

�� No need for No need for 

assumptionsassumptions

�� Min error =Min error =

3 * 3 * ρρ * min* min

�� ProbabilityProbability

�� 2n messages2n messages
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