
Consistency and Replication

Raul Ceretta Nunes

Object Replication (1)

Organization of a distributed remote object shared by
two different clients.

Object Replication (2)

a) A remote object capable of handling concurrent invocations on its own.

b) A remote object for which an object adapter is required to handle
concurrent invocations

Object Replication (3)

a) A distributed system for replication-aware distributed objects.

b) A distributed system responsible for replica management

Data-Centric Consistency Models

The general organization of a logical data store, physically
distributed and replicated across multiple processes.

Strict Consistency

Behavior of two processes, operating on the same data item.

• A strictly consistent store.

• A store that is not strictly consistent.

Linearizability and Sequential Consistency (1)

(a) A sequentially consistent data store.

(b) A data store that is not sequentially consistent.

Three concurrently executing processes.

z = 1;

print (x, y);

y = 1;

print (x, z);

x = 1;

print (y, z);

Process P3Process P2Process P1

Linearizability and Sequential Consistency (2)

Four valid execution sequences for the processes of the
previous slide. The vertical axis is time.

y = 1;

x = 1;

z = 1;

print (x, z);

print (y, z);

print (x, y);

Prints: 111111

Signature:

111111

(d)

y = 1;

z = 1;

print (x, y);

print (x, z);

x = 1;

print (y, z);

Prints: 010111

Signature:

110101

(c)

x = 1;

y = 1;

print (x,z);

print(y, z);

z = 1;

print (x, y);

Prints: 101011

Signature:

101011

(b)

x = 1;

print (y, z);

y = 1;

print (x, z);

z = 1;

print (x, y);

Prints: 001011

Signature:

001011

(a)

Casual Consistency (1)

Necessary condition:

Writes that are potentially casually related must be seen

by all processes in the same order. Concurrent writes

may be seen in a different order on different machines.

This sequence is allowed with a casually-consistent store, but
not with sequentially or strictly consistent store.

Casual Consistency (2)

a) A violation of a casually-consistent store.

b) A correct sequence of events in a casually-consistent store.

FIFO Consistency (1)

Necessary Condition:

Writes done by a single process are seen by all other

processes in the order in which they were issued, but

writes from different processes may be seen in a

different order by different processes.

A valid sequence of events of FIFO consistency

FIFO Consistency (2)

Statement execution as seen by the three processes from the
previous slide. The statements in bold are the ones that
generate the output shown.

y = 1;

print (x, z);

z = 1;

print (x, y);

x = 1;

print (y, z);

Prints: 01

(c)

x = 1;

y = 1;

print(x, z);

print (y, z);

z = 1;

print (x, y);

Prints: 10

(b)

x = 1;

print (y, z);

y = 1;

print(x, z);

z = 1;

print (x, y);

Prints: 00

(a)

P1 P2 P3

Weak Consistency (1)

Properties:

• Accesses to synchronization variables

associated with a data store are sequentially

consistent

• No operation on a synchronization variable is

allowed to be performed until all previous

writes have been completed everywhere

• No read or write operation on data items are

allowed to be performed until all previous

operations to synchronization variables have

been performed.

Weak Consistency (2)

a) A valid sequence of events for weak
consistency.

b) An invalid sequence for weak consistency.

Release Consistency

A valid event sequence for release consistency.

Rules:

• Before a read or write operation on shared data is performed, all
previous acquires done by the process must have completed
successfully.

• Before a release is allowed to be performed, all previous reads
and writes by the process must have completed

• Accesses to synchronization variables are FIFO consistent
(sequential consistency is not required).

Entry Consistency (1)

Conditions:

• An acquire access of a synchronization variable is not allowed
to perform with respect to a process until all updates to the
guarded shared data have been performed with respect to that
process.

• Before an exclusive mode access to a synchronization variable
by a process is allowed to perform with respect to that process,
no other process may hold the synchronization variable, not
even in nonexclusive mode.

• After an exclusive mode access to a synchronization variable
has been performed, any other process's next nonexclusive
mode access to that synchronization variable may not be
performed until it has performed with respect to that variable's

owner.

Entry Consistency (2)

A valid event sequence for entry consistency.

Summary of Consistency Models

(a) Consistency models not using synchronization operations.

(b) Models with synchronization operations.

(b)

Shared data pertaining to a critical region are made consistent when a critical region is
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were used. Writes from
different processes may not always be seen in that order

FIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
time

Sequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (nonunique) global timestamp

Linearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Client-Centric Models

Eventual Consistency

Monotonic Reads

Monotonic Writes

Read Your Writes

Writes Follow Reads

Eventual Consistency

The principle of a mobile user accessing different

replicas of a distributed database.

Monotonic Reads

The read operations performed by a single process P at two
different local copies of the same data store.

a) A monotonic-read consistent data store

b) A data store that does not provide monotonic reads.

Monotonic Writes

The write operations performed by a single process P at two different local
copies of the same data store

a) A monotonic-write consistent data store.

b) A data store that does not provide monotonic-write consistency.

Read Your Writes

a) A data store that provides read-your-writes consistency.

b) A data store that does not.

Writes Follow Reads

a) A writes-follow-reads consistent data store

b) A data store that does not provide writes-follow-reads
consistency

Replica Placement

The logical organization of different kinds of

copies of a data store into three concentric rings.

Server-Initiated Replicas

Counting access requests from different clients.

Pull versus Push Protocols

A comparison between push-based and pull-based protocols

in the case of multiple client, single server systems.

Fetch-update timeImmediate (or fetch-update time)
Response time at

client

Poll and updateUpdate (and possibly fetch update later)Messages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

Remote-Write Protocols (1)

Primary-based remote-write protocol with a fixed server

to which all read and write operations are forwarded.

Remote-Write Protocols (2)

The principle of primary-

backup protocol.

Local-Write Protocols (1)

Primary-based local-write protocol in which a single copy is
migrated between processes.

Local-Write Protocols (2)

Primary-backup protocol in which the primary migrates

to the process wanting to perform an update.

Active Replication (1)

The problem of replicated invocations.

Active Replication (2)

a) Forwarding an invocation request from a replicated object.

b) Returning a reply to a replicated object.

Quorum-Based Protocols

Three examples of the voting algorithm:

a) A correct choice of read and write set

b) A choice that may lead to write-write conflicts

c) A correct choice, known as ROWA (read one, write all)

