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Abstract

One of the fundamental differences between a central-
ized system and a distributed one is the notion of partial fail-
ures. The ability to efficiently and accurately detect failures
is a key element underlying reliable distributed computing.
In current distributed systems however, failure detection is
either left to the application developer or hidden from the
programmer and provided in an ad hoc manner behind the
scene. We plead for an intermediate approach where failure
detectors are first class objects. We view failure detection as
an abstraction, the complexity of which is encapsulated be-
hind well defined interfaces. The various roles of a failure
detection service are all represented as first class objects.
Following our approach, one can reuse existing failure de-
tection protocols as they are or, through composition or re-
finement, define new protocols that match the application
requirements. We describe an interesting result of a com-
position that mixes push and pull failure monitoring and we
show how scalability issues may be addressed by using a hi-
erarchical failure detection configuration. We also discuss
the implementation of our failure service both in CORBA
and in Java.

1 Introduction

The notion of partial failures is a fundamental character-
istic of a distributed system: at a given time, some compo-
nents of the system might have failed whereas others might
be operational. The ability to hide partial failures from ap-
plications is usually considered a crucial way to measure
the reliability of the system. All reliability schemes that
we know about rely, to some extend, on failure detection
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mechanisms. Such mechanisms are particularly valuable
for transaction management, replication, load balancing,
distributed garbage collection, as well as for specific moni-
toring applications like supervision and control systems.

1.1 Current Practices

In most distributed systems, failure detection is left to
the application developer (e.g., in DCE and PVM). Fail-
ures are handled through mechanisms like exceptions and
it is up to the programmer to distinguish a physical failure
from a logical failure specific to the application’s seman-
tics. Some reliable distributed programming toolkits how-
ever (e.g., group oriented systems [3] or transaction mon-
itors [2]) provide support for failure detection through the
use of timeouts. Nevertheless, the specific code that han-
dles timeouts is usually mixed with the code of the dis-
tributed protocols (e.g., group membership and atomic com-
mitment). It is very difficult, if not impossible, to adapt the
failure detection mechanism to the network topology with-
out modifying the application or the underlying distributed
protocols. The only parameters that are usually left to the
developer are timeout values. These are indeed fundamental
parameters that enable the developer/user to trade latency
(short timeouts) with accuracy (long timeouts). She/he can-
not however parametrize the failure detection protocol it-
self. This can be viewed as a serious drawback of existing
distributed systems and can seriously reduce their scalabil-
ity and more generally their applicability in various con-
texts. For example, according to the network topology and
the communication pattern of the application, the choice be-
tween a push (heartbeat) or a pull (are-you-alive) monitor-
ing model can have an important impact on the performance
of the system. Furthermore, in a large scale system, one
might use either of those models in a hierarchical or a ran-
domized gossiping style to reduce the number of messages
exchanged in the network.
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1.2 Failure Detectors as First Class Objects

It is until very recently that the idea of considering fail-
ure detection as a first class distributed service has emerged.
Axiomatic properties of failure detectors have been exhib-
ited and it was shown that even unreliable failure detec-
tors can help circumventing known impossibility results in
distributed computing [5, 4]. Roughly speaking, a fail-
ure detector is viewed as a distributed oracle that provides
hints about failures in the system. One can prove the
correctness of distributed agreement protocols (e.g., con-
sensus, atomic broadcast, or non-blocking atomic commit-
ment) simply by relying on abstract axiomatic failure detec-
tor properties. Following that theoretical work, researchers
at Cornell University suggested to consider the failure de-
tection as an operating system service that sits among es-
tablished services such as naming, authentication, and file
management [16, 14]. In this paper, we go a step further by
considering failure detectors as first class citizens. Roughly
speaking, failure detection is not transparent to the devel-
oper but rather hidden behind abstract, yet accessible, first
class object interfaces.

On the one hand, we decouple failure detection mecha-
nisms from other mechanisms in the system, thus enhanc-
ing modularity and extensibility. In fact, we even decouple
the various roles of failure detection components: namely,
monitor, monitorable, and notifiable objects. The failure
detection service is viewed as a hierarchy of well defined
interfaces and one can reuse existing mechanisms or build
new ones through composition or refinement. We present
a simple example of composition where push and pull fail-
ure monitoring models are mixed inside a dual monitoring
scheme.

On the other hand, we consider the entities being mon-
itored as abstract objects in the system and we eliminate
the mismatch between (1) the need for failure detection at
the level of application objects and (2) the support provided
by some operating systems to detect host failures. One can
configure the failure detection service in such a way that the
monitored units can range from specific application objects,
to threads, processes, machines, or even subnets. We give
an example of a scalable hierarchical configuration and we
discuss how the randomized gossiping scheme of [14] can
be developed with our infrastructure.

1.3 Current Status

We developed our failure detection service in the context
of the European ESPRIT project OpenDREAMS,1 which
aims at providing a CORBA compliant reliable framework
for supervision and control systems. The failure detection

1Projects 20843 and 25262.

service is a part of a family of services that address the de-
pendability requirements of distributed applications [7, 8]:
these also include an Object Group Service and a Consensus
Service [9]. We experimented the portability of our failure
detection service on three ORBs: ORBIX [10], VisiBro-
ker [15], and ORBacus [6]. As we point out in the paper,
our experiments revealed some fundamental variations in
the way these ORBs handle timeouts on remote invocations.
Our work in the context of CORBA, and particularly our
failure detector model, has significantly influenced many of
the proposals that have recently been made to the OMG in
the context of its undergoing standardization effort towards
fault-tolerant CORBA [13].

More recently, we also implemented our failure monitor-
ing architecture in the form of a Java component. We pack-
aged our service as a programmatic general purpose API
useful for distributed enterprise computing. We used for
that several interfaces defined in the Enterprise Java plat-
form [1].

1.4 Roadmap

The rest of this paper is organized as follows. Section 2
presents our generic failure detection architecture, recalls
the two well known failure monitoring models, namely push
and pull, and then introduces our generic dual monitoring
scheme that combines the properties of those two models.
Section 3 discusses the interactions between the compo-
nents of the failure detection service. Section 4 describes
how our architecture helps the configuration of failure de-
tection to scale according to the underlying network. Sec-
tion 5 and Section 6 discuss some issues we faced when
implementing our architecture as a CORBA service and as
a Java component, respectively. Finally, Section 7 presents
some concluding remarks.

2 A Generic Failure Detection Architecture

Roughly speaking, a failure detection service is a dis-
tributed oracle (a monitor) aiming at providing some dis-
tributed objects (notifiable objects) with hints about the
crash of other objects (monitorable objects).

This section presents the architecture of our object mon-
itoring service. The service is generic in the sense that it
supports several interaction styles and may be configured in
various ways. The interfaces of the monitoring service are
arranged in a hierarchy that provides different views of the
service and different interaction paradigms for failure de-
tection (Figure 1). In particular, the hierarchy includes spe-
cialized interfaces for the push and the pull execution styles.
A dual monitoring model is defined in a clean way by sim-
ply inheriting from the push and pull models. For simplicity
of presentation, the interfaces have been intentionally kept
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minimal. In particular, management operations used to con-
figure the failure detectors have been partially omitted.
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Figure 1. Class Diagram of the Object Monitoring Service

Interfaces

2.1 Application-Oriented Interfaces

Client applications that use the service for monitoring
remote objects have a limited view of the service, restricted
to the three topmost interfaces of Figure 1. These interfaces
abstract the flow model used for object monitoring. As a
consequence, applications that use the service do not need
to care about the interaction paradigms used for monitoring
objects. In particular, this makes it possible to mix several
monitoring models in the same distributed application with
no impact on the clients.

These three interfaces abstract the roles of objects in-
volved in a monitoring system:

• Monitors (or failure detectors) are the objects that col-
lect information about component failures. In this pa-
per, we focus on failure monitoring, and we consider
the terms “monitor” and “failure detector” as equiva-
lent.

• Monitorable objects are objects that may be moni-
tored, i.e., the failure of which may be detected by the
failure detection system.

• Notifiable objects are objects that can be registered by
the monitoring service, and that are asynchronously
notified about object failures.

Monitorable and notifiable objects are generally
application-specific. In other words, the interfaces deriving
from Monitorable and Notifiable are interfaces
that the application must support for the service to call back
to the application. Default implementations of monitorable
objects are provided by our service. However, these objects
must be instantiated by the application.

2.2 Service-Oriented Interfaces

In contrast to the monitorable and notifiable interfaces,
monitors are implemented by the service and do not need to
be instantiated by the application. More precisely, the in-
terfaces deriving from Monitor are service objects (Fig-
ure 1), the implementation of which is provided by the ser-
vice. These interfaces abstract the behavior of monitoring
protocols and the way the information about component
failures is propagated in the system, i.e., the flow policy.
There are two basic forms of unidirectional flow, push and
pull, plus several variants [11]. These flow policies corre-
spond to simple monitoring protocols. We outline below
these protocols and we describe a new one that results from
a combination of push and pull monitoring schemes.

The Push Model

In the push model, the direction of control flow matches the
direction of information flow. With this model, monitorable
objects are active. They periodically send heartbeat mes-
sages to inform other objects that they are still alive. If a
monitor does not receive the heartbeat from a monitorable
object within specific time bounds, it starts suspecting the
object. This method is efficient since only one-way mes-
sages are sent in the system, and it may be implemented
with hardware multicast facilities if several monitors are
monitoring the same objects.

push
("I am alive!")

Monitorable
ObjectsMonitorClient

push
("It is alive!")

Figure 2. The Push Model for Object Monitoring

Figure 2 illustrates how the push model is used for mon-
itoring objects. Note that the messages exchanged between
the monitor and the client are different from the heartbeat
messages sent by monitorable objects. The monitor gen-
erally notifies the client only when a monitorable object
changes its status (i.e., becomes suspected or is no longer
suspected), while heartbeat messages are sent continuously.

I am
alive!

Monitor

M1:
Monitorable

SUSPECT
M1

Failure

Timeout T

I am
alive!

I am
alive!

Figure 3. Monitoring Messages in the Push Model

The messages exchanged between the monitor and the
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monitorable object with a push-style protocol are shown in
Figure 3. The monitorable object periodically sends heart-
beat messages to the monitor. Upon message reception, the
monitor sets a timer that triggers a suspicion if it expires
before the reception of a new heartbeat message from the
same object.

The Pull Model

In the pull model, information flows in the opposite direc-
tion of control flow, i.e., only when requested by consumers.
With this model, monitored objects are passive. The mon-
itors periodically send liveness requests to monitored ob-
jects. If a monitored object replies, it means that it is alive.
This model may be less efficient than the push model since
two-way messages are sent to monitored objects, but it is
easier to use for the application developer since the moni-
torable objects are passive, and do not need to have any time
knowledge (i.e., they do not have to know the frequency at
which the monitor expects to receive messages). Figure 4 il-
lustrates how the pull model is used for monitoring objects.

pull
("Are you alive?")

Monitorable
ObjectsMonitorClient

pull
("Is it alive?")

Yes Yes

Figure 4. The Pull Model for Object Monitoring

The messages exchanged between the monitor and the
monitorable object with a pull-style protocol are shown in
Figure 5. The monitor sends periodically a liveness request
to the monitorable objects, and waits for a reply. If it does
not get the reply, a timeout triggers a suspicion.

Monitor

M1:
Monitorable

Yes

Timeout T

Are you
alive?

SUSPECT
M1

Failure

Timeout T Timeout T

Are you
alive?

Are you
alive?

Yes

Figure 5. Monitoring Messages in the Pull Model

2.3 The Dual Scheme

In the pull model, the monitor parameters (e.g., time-
outs, which may need dynamical adjustment) need only re-
side in the monitor and are not distributed in all the moni-
torable objects. However, using push style communication
between monitor and monitorable objects is more efficient
and may reduce the number of messages generated when
using hardware multicast facilities (such as IP multicast) if

several monitors are listening to the heartbeats.2 Both mod-
els are thus complementary, and the type of interaction to
use depends on the nature of the application.

Therefore, we introduce a model resulting from the com-
bination of the two models, called the dual model, in which
the push and pull models can be used at the same time with
the same set of objects. Informally, the dual monitoring pro-
tocol works as follows. The protocol is split in two distinct
phases. During the first phase, all the monitored objects
are assumed to use the push model, and hence to send live-
ness messages (heartbeats). After some delay, the monitors
switch to the second phase, in which they assume that all
monitored objects that did not send a heartbeat during the
first phase use the pull model. In this phase, the monitors
send a liveness request to each monitored object, and ex-
pect a liveness message (similar to the push model) from
the latter. If the monitored object does not send this mes-
sage within some specific time bounds, it gets suspected by
the monitor.

Our dual model is not a new failure detection protocol
per se. It should rather be viewed as a way to mix differ-
ent styles of monitoring without requiring the monitor to
know which model is supported by every single monitorable
object. It hence provides more flexibility by letting moni-
torable objects use the best suited interaction style.

Monitor

M1: Push-Aware
Monitorable

M2: Push-Unaware
Monitorable

Are you
alive?

I am
alive!

I am
alive!

Timeout T1 Timeout T2 Timeout T1 Timeout T2

Are you
alive?

I am
alive!

SUSPECT
M1

Failure

Figure 6. Monitoring Messages in the Dual Model

Figure 6 illustrates object monitoring with a dual-style
protocol. In this example, two objects are being monitored.
The first object, M1, is push-aware, i.e., it is active and
periodically sends liveness messages (heartbeats). The sec-
ond one, M2, is not push-aware, i.e., it only sends live-
ness messages when it is asked to. The monitor uses two
timeout periods T 1 and T 2 for phases 1 and 2. It expects
liveness messages of push-aware monitorable objects dur-
ing phase 1. After T 1, the monitor switches to phase 2 and
sends a liveness request to each monitorable object from
which it did not receive a liveness message, expecting a re-
ply during T 2. After T 2, the monitor suspects every process
from which it did not receive a message. In this example,
M1 sends a liveness message during T 1 in the first phase,
and crashes soon after. In the second phase, the monitor
sends a liveness request to M1, but does not get a liveness

2Note that heartbeat messages generated by a large number of moni-
torable objects may also inadvertently flood the network, while this situa-
tion is easier to detect and avoid if the messages are sent from less sources.
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message before the end of T 2. Thus, it starts suspecting
M1 to have crashed.

3 Basic Interactions of Failure Detection
Components

This section describes the interface and semantics of the
failure detection components by presenting the interactions
between these components. There are two types of interac-
tions between application clients, monitors, notifiables, and
monitorable objects:

1. Monitor ↔ client and monitor ↔ notifiable: this in-
teraction allows the application to obtain information
about object failures.

2. Monitor ↔ monitorable: this interaction is performed
by the monitoring service to keep track of the status of
monitorable objects.

M1

M2

is_it_alive
(M1)

notify_failure
(M2)

Monitorable
ObjectsClient

Notifiable
Object

Monitor

M1:
M2:

ALIVE
SUSPECTED

Crash

Yes

Figure 7. Components and Interactions of an Object Mon-

itoring System

Figure 7 illustrates the components and interactions of an
object monitoring system. This sample configuration com-
prises a client, a notifiable object, a monitor, and two mon-
itorable objects M1 and M2. The monitor keeps track of
component failures. The client explicitly asks the monitor
about the status of monitorable objects. Upon the crash of a
monitored object, the monitor asynchronously informs the
notifiable object of the failure.

3.1 Monitor ↔ Monitorable

The basic interaction paradigm of the monitoring service
consists in having monitors and monitorable objects com-
municate with each other using remote method invocations.
When using the push execution style, monitorable objects
periodically invoke the i am alive() operation of the
monitors they are registered with, in order to advertise the
fact that they are alive. When using the pull execution style,
monitors periodically invoke the are you alive() op-
eration of monitorable objects; this operation is one-way,

and the monitorable objects should react by invoking the
i am alive() operation of the monitor that originally
issued the liveness request. When using the dual execu-
tion style, these interfaces allow to marry the push and the
pull models. During the first phase of the dual protocol,
the monitor assumes that all monitorable objects are using
the push execution style, and expects heartbeat messages.
During the second phase, the monitor assumes that all mon-
itorable objects from which it did not receive a heartbeat
are using the pull execution style. Thus, it sends liveness
requests to these objects.

The default way for a monitor to keep track of the sta-
tus of the components in the system is to periodically check
whether they are alive or not. This information is stored in a
local table, and given to clients when they ask about the sta-
tus of a particular object. Liveness information is typically
associated with a time-to-live value (which may change on
a per-object basis) telling when to invalidate and re-evaluate
the suspicion information. Another way to obtain informa-
tion about the status of monitored objects is to do it on
client’s demand (lazy evaluation). With this scheme, the
monitorable object is checked on client demand (i.e., when
the client asks the monitor for the status of an object). This
makes the system less reactive since the client has to wait
for the liveness request to return before it knows the ob-
ject’s status. However, monitoring objects solely on client’s
demand may significantly reduce the number of monitoring
messages exchanged in the system.

3.2 Monitor ↔ Client and Monitor ↔ Notifiable

A client can ask the monitor to start and stop monitoring
an object by invoking the start monitoring() and
stop monitoring() operations, and obtain the status
of an object by invoking the is it alive() operation.
From a monitor’s point of view, a monitored object can have
one of three states:

• SUSPECTED means that the object is suspected by the
monitor.

• ALIVE means that the object is considered as alive by
the monitor.

• DONT KNOW means that the object is not being mon-
itored.

Although most applications need to invoke the monitor
synchronously at specific points during protocol execution,
it may sometimes be useful to receive asynchronous notifi-
cations when the state of an object changes. In particular,
when protocols are implemented using a state machine ap-
proach, a suspicion can be seen as an event that triggers
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some specific action. In this situation, asynchronous suspi-
cion notifications greatly reduce the complexity of the pro-
tocol’s implementation.

A parameter of the start monitoring() operation
allows us to register an object with the Notifiable in-
terface. The monitor invokes the notify suspicion()
operation of each registered notifiable object when the sta-
tus of a monitored object changes (if an object becomes
suspected, or if an object that was previously suspected is
discovered to be alive). The client may still pass a null
reference as notifiable object if it is not interested in asyn-
chronous notifications.

4 Putting Failure Detectors to Work

This section describes how our generic failure detection
architecture can be applied to various system configura-
tions. We consider the sample network topology of Fig-
ure 8, where several clients, monitors, and monitorable
objects are split over three different Local Area Networks
(LANs). We present how these monitors can be configured
in a hierarchy, and how they can use gossip-style protocols
to reduce the number of messages exchanged in the net-
work.

W
A

N

FD3’

FD3

LAN3

M3 M3’

FD2

M2

C2

LAN2

LAN1

FD1

C1

C1’

Client

Monitorable object

Failure detector

Figure 8. A Sample Network Topology

The problem of scalability is a major concern for a mon-
itoring service that has do deal with large systems. A tra-
ditional approach to failure detection is to augment each
entity participating in a distributed protocol with a local
monitor that provides it with suspicion information. How-
ever, this architecture raises efficiency and scalability prob-
lems with complex distributed applications, in which a large
number of participants are involved. In fact, if each partic-
ipant monitors the others using point-to-point communica-
tion, the complexity of the number of messages is O(n2)
for n participants. Wide area communication is especially
costly and increases the latency of the whole system. It is
thus very important to reduce the amount of data exchanged
between distant hosts.

4.1 A Hierarchical Configuration

The interfaces of our monitoring service make it easy to
configure the monitoring system in a hierarchy, as shown
in Figure 9. In a LAN, one or several failure detectors
can keep track of the state of all local monitorable objects,
and transmit status information to remote monitors in other
LANs, thus reducing the number of costly inter-LAN re-
quests. Similarly, the developer may choose to install one
monitorable object per host, per process, or per thread, de-
pending on the kinds of failures that she/he considers. These
configuration choices may be taken at runtime, and do not
require modifications in the interfaces of the service.

A monitor may receive liveness information about a spe-
cific monitorable object from another monitor rather than
directly from the monitorable object. This second-hand in-
formation may be obtained in two ways:

1. By asking the other monitors about the status of each
individual object;

2. By transmitting complete tables of suspicion infor-
mations, thus reducing the communication overhead.
This solution requires an extension to the service’s in-
terfaces of Section 2 in order to transmit these tables.3

The hierarchical configuration is independent of the
model used for monitoring objects (push, pull, or dual
model). It permits a better adaptation of monitor param-
eters (such as timeouts) to the topology of the network or
to the location of monitored objects, and reduces the num-
ber of messages exchanged in the system between distant
hosts. A monitor located in a LAN can adapt to the network
characteristics and provide a specific quality of service. The
reduction of network traffic, especially when a lot of moni-
torable objects and clients are involved, is the main reason
for the good scalability of this hierarchical approach.

FD3’

FD3

M3

M3’

FD2

M2

C2

FD1

C1

C1’
Client

Monitorable object

LAN1

Failure detector

Monitoring msg.

LAN3

LAN2

Figure 9. A Typical Hierarchical Configuration

In the hierarchical configuration of Figure 9, two groups
of objects (M3 and M3′) are both being monitored by two

3A simple extension consists in subclassing the interfaces to add
an operation to get the status of several objects from a list (e.g.,
are they alive()), and an operation to inform about the status of
multiple objects (e.g., they are alive()).
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distinct monitors (or failure detectors) (FD3 and FD3 ′) in
a LAN (LAN3). Two clients (C1 and C1′) are located in
another LAN (LAN1), and monitor the former objects in-
directly through a local failure detector (FD1). There are
two distinct paths between FD1 and the monitorable ob-
jects, making the failure of FD3 or FD3 ′ transparent to the
clients. However, there is no redundancy in LAN1, and the
failure of FD1 would prevent clients from getting liveness
information about M3 and M3 ′. This configuration ex-
ample reduces inter-LAN communication, when compared
to a traditional approach with one local monitor per client,
and messages exchanged between each failure detector and
monitorable object.

An interesting extension of the hierarchical configuration
consists in viewing a monitorable object as a monitor object
that only monitors itself, and that never suspects itself. A
call to mon->are you alive() would be replaced by
mon->is it alive(mon). The new interfaces would
be simpler, since there would be no monitorable object, and
would provide a clean and orthogonal design of hierarchical
object monitoring.

Since a link may break anywhere in the hierarchy, a set of
simple rules for hierarchical invocations helps determining
if a particular object is suspected to have crashed or not:

• If a failure detector says that a monitorable object is
alive, this object was actually alive some time before.

• If an invocation to a failure detector fails when ask-
ing for the status of a monitorable object, the invoker
must assume that the object is suspected by the failure
detector.

• If there is more than one path leading to a monitorable
object, and this object is not suspected by the failure
detectors of at least one path, it must be considered as
alive.

4.2 A Gossip-Style Protocol

In gossip protocols, unlike in traditional protocols, a
member forwards new information to randomly chosen
members. Gossip protocols tend to combine the flexibility
of hierarchical dissemination with the robustness of flood-
ing protocols (in which a member diffuses the information
to all its neighbors or to all other members). In [14], a
simple, yet powerful, gossip style protocol is proposed for
detecting remote component failures in a distributed envi-
ronment. In this protocol, each member maintains a list
of values that indicates for each member a strictly increas-
ing heartbeat counter. Members occasionally send their list
to randomly chosen members, or broadcast it to all mem-
bers. Upon reception of a list, a member merges the old and
the new lists by keeping the maximum heartbeat counter of

each member. This protocol has been extended to scale well
in the Internet, by using the network topology and handling
gossiping in a different ways in LANs and across LANs.

FD3’

FD3

M3

M3’

FD2

M2

C2

FD1

C1

C1’
Client

Monitorable object

Failure detector

LAN1

FD3’

FD3

M3

M3’

FD2

M2

C2

FD1

C1

C1’

LAN1

t

t+1

Monitoring msg.

Gossip msg.

LAN3

LAN2

LAN3

LAN2

Figure 10. Two Typical Dynamic Configurations

One can easily build this protocol with our generic archi-
tecture, by having specific implementations of failure de-
tectors that occasionally send their suspicion information to
other failure detectors. The interaction between failure de-
tectors and clients/monitorable objects is not affected. Un-
like the hierarchical configuration presented in Section 4.1,
sending information to randomly chooses failure detectors
creates an invocations graph that evolves in time as a dy-
namic hierarchy.

Figure 10 presents two dynamic configurations of fail-
ure detectors that use a gossip-style protocol. Thick arrows
denote gossip messages exchanged between failure detec-
tors. One can see in the bottom invocation graph that FD1
broadcasts its list to all members instead of sending it to a
randomly chosen member.

5 Failure Detection as a CORBA Service

Our CORBA implementation of failure detection has
been written in C++ and tested with three different ORBs:
Orbix [10], VisiBroker [15], and ORBacus [6]. In this sec-
tion, we first point out some issues related to timeout-based
failure detection in these ORBs. Then, we describe the IDL
interfaces of our failure detection service and we discuss
some of its configuration characteristics.
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5.1 On the Use of Timeouts in CORBA

Ultimately, any failure detection implementation is
based on timeouts or time events. Associating a timeout
value to a remote invocation specifies how long one has
to wait for a reply from a potentially failed object. The
CORBA 2.x specification [12] leaves open how request
timeouts should be handled. This is an important concern
when using two-way invocations for object monitoring and
leads to proprietary and incompatible ways to handle time-
outs. In particular, the three ORBs that we have used differ
by the following properties:

• Timeout resolution: millisecond or second.

• Exception raised upon timeout: CORBA::
NO RESPONSE or CORBA::COMM FAILURE.

• Lifetime of timeout settings: One request or lifetime of
the connection.

• Semantics of timeouts: Timeout occurs if any block-
ing period (request or reply) exceeds specified timeout,
timeout is the maximal time the caller has to wait for
the reply, or two timeouts must be specified indepen-
dently for the request and for the reply.

These differences make it difficult to develop a portable
implementation of the monitoring service. Therefore, we
have chosen to handle timeouts on top of CORBA using
one-way invocations (without timeout) for interactions be-
tween failure detectors and monitorable objects. 4 The re-
quest invoking party uses its own notion of time to provide
the timeout semantics it needs.

5.2 Monitoring Service IDL Interfaces

Figure 11 presents excerpts5 of the IDL interfaces of our
CORBA object monitoring service. These interfaces corre-
spond to the class diagram of Figure 1 in Section 2.

An alternative approach to object monitoring would con-
sist in reusing portions of the CORBA event and notification
services, which provide the two basic push and pull interac-
tion models and asynchronous notification facilities. Failure
detectors would be specific implementations of event chan-
nels, and monitorable objects would be consumers or sup-
pliers depending on the monitoring model. Although some
mechanisms of these services may be reused, this approach
requires important modifications to their interface to match
the failure detection problem (e.g., to start monitoring an
object, or to inquire about the status of monitored object).

4Note that CORBA one-way invocations provide only best effort se-
mantics. A better solution would be to use OMG’s forthcoming messaging
service, which provides various qualities of service such as asynchronous
reliable communication.

5Management operations have been omitted.

1 / / IDL
2 module mMonitoring {
3 / / Cl ient i n t e r f a c e s for a l l flow models
4 enum Status { SUSPECTED, ALIVE, DONTKNOW } ;
5

6 interface Monitorable {
7 } ;
8

9 interface Not i f i ab l e {
10 void no t i fy susp ic ion ( in Monitorable mon,
11 in boolean suspected ) ;
12 } ;
13

14 interface Monitor {
15 void s t a r t mon i to r ing ( in Monitorable mon,
16 in Not i f i ab l e not ) ;
17 void s top moni tor ing ( in Monitorable mon,
18 in Not i f i ab l e not ) ;
19 Status i s i t a l i v e ( in Monitorable mon) ;
20 } ;
21

22 / / In t e r faces for a l l models
23 interface HeartbeatMonitor : Monitor {
24 oneway void i am al ive ( in Monitorable mon) ;
25 } ;
26

27 / / Pull model
28 interface PullMonitor : HeartbeatMonitor {} ;
29

30 interface Pul lMoni torable : Monitorable {
31 oneway void a re you a l ive ( in PullMonitor mon) ;
32 } ;
33

34 / / Push model
35 interface PushMonitor : HeartbeatMonitor {} ;
36

37 interface PushMonitorable : Monitorable {
38 void send hea r tbea t s ( in PushMonitor mon,
39 in long frequency ) ;
40 } ;
41

42 / / Dual model
43 interface DualMonitor : PullMonitor ,
44 PushMonitor {} ;
45

46 interface DualMonitorable : Pul lMoni torable ,
47 PushMonitorable {} ;
48 } ;

Figure 11. IDL Interfaces for the Object Monitoring Ser-

vice

5.3 System Management and Configuration

Besides the object monitoring interfaces previously de-
scribed, the monitoring service defines interfaces for man-
aging the configuration of the hierarchical system. These
interfaces define administrative operations for tasks such as
linking failure detectors together, exchanging suspicion ta-
bles, or finding invocation paths to monitored objects. De-
scribing these interfaces is not in the scope of this paper
since they are not explicitely used by the clients of the ser-
vice. However, some aspects of system configuration are of
direct interest for clients. In particular, clients need to dis-
cover the failure detectors currently running in the system,
and get hints about their relative proximity. In our imple-
mentation, this information is given to clients through the
CORBA Naming Service.

The naming service maintains name-to-object mappings
in a federated architecture. These name-to-object associ-
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ations are called name bindings. A name binding is de-
fined relative to a naming context, which is a CORBA object
responsible for maintaining a set of bindings with unique
names. Different names can be bound to an object in the
same or in different contexts at the same time. Because a
context is like any other object, it can also be bound to a
name in a naming context. Binding contexts in other con-
texts creates a naming graph. We use this naming graph
to describe the hierarchical architecture of our monitoring
service.

Although CORBA aims at providing location trans-
parency, we need to have some knowledge of the network
topology in order to take advantage of it in the monitor-
ing service. Therefore, we map topological domains (e.g.,
LANs) to naming contexts in a hierarchical fashion. Each
failure detector has an entry in its domain, and is tagged
with an attribute that identifies it as a failure detector. Mon-
itorable objects can (but are not obliged to) register them-
selves in the naming service, in the context corresponding to
their local domain. The clients can thus know which failure
detectors are local to their domain, and can take advantage
of this information. When invoking a failure detector lo-
cated in a different naming graph than the current domain,
it is likely to involve wide area communication. Although
this approach based on the naming service has some obvi-
ous limitations, it has the advantage of being simple to use
and maintain, and of being based on standard interfaces.

The CORBA Trading Object Service provides an alter-
nate way for a client to locate a nearby failure detector.
The trading object service is similar to the naming service,
but maintains (typed) properties-to-object mappings rather
than name-to-object mappings. The trading object service
is built as a federation of traders. In short, the trading object
service provides the functionality of yellow pages where the
naming service acts as white pages.

With the trading object service, a client contacts a trader
requesting a monitor that corresponds to some properties,
e.g., physical proximity. The trader then hands back a refer-
ence to the monitor that best satisfies the requirements. We
did not however implement this solution, since there still
exist only few implementations of the trading object service
when compared to the naming service.

6 Failure Detection as a Java Component

The second implementation of our monitoring architec-
ture comes in the form of a Java component. Our goal
with this Java component is to provide a general purpose
API useful for distributed enterprise computing. We make
use of several interfaces defined in the Java Enterprise plat-
form [1]. This technology defines a model for the develop-
ment and deployment of reusable Java server components,
i.e., pre-developed pieces of application code that can be as-

sembled into working application systems. The Java moni-
toring services uses the following Java enterprise APIs:

• The Java Remote Method Invocation (RMI) API for
communications bewteen remote objects. This API
provides native Java support for invocations between
remote components. RMI is used for synchronous in-
vocations in the monitoring service, such as querying
a failure detector.

• The Java Messaging Service (JMS) API for op-
tional efficient support of the push model through
publish/subscribe technology. This API supports
asynchronous communication in the Java platform
through mechanisms such as reliable queues and
publish/subscribe services. Several implementa-
tions of the JMS specifications already provide pub-
lish/subscribe communication through lightweight and
efficient mechanisms based on hardware multicast fa-
cilities. Such facilities greatly improve the scalability
of the system when using a push monitoring model.

• The Java Naming and Directory Interface (JNDI) API
to access the naming services that maintain the infor-
mation about the failure detector and the objects they
are monitoring in the system. This API provides uni-
fied access to several types of naming and directory
services, such as DNS, NDS, NIS+, LDAP, and COS
Naming.

• Although not supported in the current implementation,
the service will use the Java IDL API for reusing por-
tions of the current CORBA implementation, and in-
teroperating with it through IIOP. This API creates re-
motes interfaces to support CORBA communication in
the Java platform.

While our Java implementation is less mature than our
CORBA implementation, it has several advantages on its
counterpart. Being implemented completely in Java, it ben-
efits from Java’s “write once run everywhere” property.
Since Java objects can be transmitted by value, it is possible
to migrate objects (such as failure detectors) from one loca-
tion to another one. This can be also useful for uploading
specialized implementations of monitorable objects to sites
that must be monitored. Finally, by using the Java Enter-
prise APIs, it relies on standard interfaces widely accepted
by the industry, while benefiting from advanced facilities
like efficient asynchronous communication.

7 Concluding Remarks

Middleware systems usually provide a set of services for
naming, trading and management, or higher level business
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domain specific objects, e.g., financial applications. Very
few services however provide support for managing failure
situations and this can be viewed as a serious drawback for
critical applications where high availability is a major con-
cern. The OMG is very aware of this shortcoming and is
in the process of standardizing a set of interfaces for Fault-
Tolerant CORBA [13].

In this paper, we advocated an approach where failure
detection is considered as a service among well established
services like naming and file management. Our approach
follows the CORBA tradition of service design and has
influenced many of the proposals that have recently been
made to the OMG standardization effort in the area of fault-
tolerance.

We do not claim that a failure detection service should be
used by all developers. There are indeed many applications
where failure detection would just be hidden behind other
services that address reliability issues such as group mem-
bership or transaction management. On the one hand how-
ever, the modularity of services (like transaction or group
membership) would be increased if the failure detection is
encapsulated inside a separate component. On the other
hand, applications such as supervision and control or net-
work management systems directly need to handle failures.
It is thus also important to encapsulate the complexity of
failure detection inside first class (application level) com-
ponents with well defined interfaces.

We did not describe, in this paper, a specific failure de-
tection protocol, but we rather presented a modular archi-
tecture to compose and customize failure detection proto-
cols according to the topology of the system and the com-
munication pattern of the application. We described a dual
monitoring scheme which results from the composition of
the well known push and pull monitoring models.

We have implemented our monitoring architecture as a
reusable component in two distributed environments: (1) as
a monitoring service for CORBA, and (2) as a class library
for Java. Our CORBA implementation of failure detec-
tion has been written in C++ and tested with three different
ORBs: Orbix [10], VisiBroker [15], and ORBacus [6]. The
Java version makes use of the Java Enterprise APIs [1].

Although we mainly targeted failure monitoring, we be-
lieve that one can extend our architecture to object moni-
toring in general, e.g., monitoring specific object values or
properties.
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