
4 0 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

crashing. This problem lends itself to fur-
ther exploration of fundamental mecha-
nisms and concepts such as time-out, multi-
cast, consensus, and failure detector. We
will survey recent theoretical results of
studies related to agreement problems and
show how system engineers can use this in-
formation to gain deeper insight into the
challenges they encounter.

Commitment protocols
In a distributed system, a transaction

usually involves several sites as participants.
At a transaction’s end, its participants must
enter a commitment protocol to commit it
(when everything goes well) or abort it
(when something goes wrong). Usually, this
protocol obeys a two-phase pattern (the
two-phase commit, or 2PC). In the first
phase, each participant votes Yes or No. If
for any reason (deadlock, a storage prob-

lem, a concurrency control conflict, and so
on) a participant cannot locally commit the
transaction, it votes No. A Yes vote means
the participant commits to make local up-
dates permanent if required. The second
phase pronounces the order to commit the
transaction if all participants voted Yes or
to abort it if some participants voted No.

Of course, we must enrich this protocol
sketch to take into account failures to cor-
rectly implement the failure atomicity prop-
erty. The underlying idea is that a failed
participant is considered to have voted No.

Atomic commitment protocols
Researchers have proposed several atomic

commitment protocols and implemented
them in various systems.1,2 Unfortunately,
some of them (such as the 2PC with a main
coordinator) exhibit the blocking property in
some failure scenarios.3,4 “Blocking” means

focus
Mastering Agreement
Problems in Distributed
Systems

Michel Raynal, IRISA

Mukesh Singhal, Ohio State University

Overcoming
agreement
problems in
distributed
systems is a
primary
challenge to
systems
designers. These
authors focus on
practical
solutions for a
well-known
agreement
problem—the
nonblocking
atomic
commitment.

D
istributed systems are difficult to design and implement because
of the unpredictability of message transfer delays and process
speeds (asynchrony) and of failures. Consequently, systems de-
signers have to cope with these difficulties intrinsically associated

with distributed systems. We present the nonblocking atomic commitment
(NBAC) agreement problem as a case study in the context of both synchro-
nous and asynchronous distributed systems where processes can fail by

fault tolerance

that nonfailed participants must wait for the
recovery of failed participants to terminate
their commit procedure. For instance, a com-
mitment protocol is blocking if it admits ex-
ecutions in which nonfailed participants can-
not decide. When such a situation occurs,
nonfailed participants cannot release re-
sources they acquired for exclusive use on the
transaction’s behalf (see the sidebar “The
Two-Phase Commit Protocol Can Block”).
This not only prevents the concerned trans-
action from terminating but also prevents
other transactions from accessing locked
data. So, it is highly desirable to devise
NBAC protocols that ensure transactions
will terminate (by committing or aborting)
despite any failure scenario.

Several NBAC protocols (called 3PC pro-
tocols) have been designed and implemented.
Basically, they add handling of failure scenar-
ios to a 2PC-like protocol and use complex
subprotocols that make them difficult to un-
derstand, program, prove, and test. More-
over, these protocols assume the underlying
distributed system is synchronous (that is, the
process-scheduling delays and message trans-
fer delays are upper bounded, and the proto-
cols know and use these bounds).

Liveness guarantees
Nonblocking protocols necessitate that

the underlying system offers a liveness guar-
antee—a guarantee that failures will be even-

tually detected. Synchronous systems provide
such a guarantee, thanks to the upper bounds
on scheduling and message transfer delays
(protocols use time-outs to safely detect fail-
ures in a bounded time). Asynchronous sys-
tems do not have such bounded delays, but
we can compensate for this by equipping
them with unreliable failure detectors, as
we’ll describe later in this article. (For more
on the difference between synchronous and
asynchronous distributed systems, see the re-
lated sidebar.) So, time-outs in synchronous
systems and unreliable failure detectors in
asynchronous systems constitute building
blocks offering the liveness guarantee. With
these blocks we can design solutions to the
NBAC agreement problem.

Distributed systems and failures
A distributed system is composed of a fi-

nite set of sites interconnected through a
communication network. Each site has a lo-
cal memory and stable storage and executes
one or more processes. To simplify, we as-
sume that each site has only one process.
Processes communicate and synchronize by
exchanging messages through the underly-
ing network’s channels.

A synchronous distributed system is
characterized by upper bounds on message
transfer delays, process-scheduling delays,
and message-processing time. δ denotes an
upper time bound for “message transfer de-

J u l y / A u g u s t 2 0 0 1 I E E E S O F T W A R E 41

A coordinator-based two-phase commit protocol obeys the
following message exchanges. First, the coordinator requests a
vote from all transaction participants and waits for their an-
swers. If all participants vote Yes, the coordinator returns the
decision Commit; if even a single participant votes No or
failed, the coordinator returns the decision Abort.

Consider the following failure scenario (see Figure A).1 Par-
ticipant p1 is the coordinator and p2, p3, p4, and p5 are the
other participants. The coordinator sends a request to all par-
ticipants to get their votes. Suppose p4 and p5 answer Yes. Ac-
cording to the set of answers p1 receives, it determines the de-
cision value D (Commit or Abort) and sends it to p2 and p3,
but crashes before sending it to p4 and p5. Moreover, p2 and
p3 crash just after receiving D. So, participants p4 and p5 are
blocked: they cannot know the decision value because they
voted Yes and because p1, p2, and p3 have crashed (p4 and p5

cannot communicate with one of them to get D). Participants
p4 and p5 cannot force a decision value because the forced
value could be different from D. So, p4 and p5 are blocked un-
til one of the crashed participants recovers. That is why the ba-
sic two-phase commit protocol is blocking: situations exist

where noncrashed participants cannot progress because of
participant crash occurrences.

Reference
1. Ö. Babaoğlu and S. Toueg, “Non-Blocking Atomic Commitment,” Distrib-

uted Systems, S. Mullender, ed., ACM Press, New York, 1993, pp.
147–166.

The Two-Phase Commit Protocol Can Block

P1

P2

P3

P4

P5

Vote request

Crash

Yes

Yes

Yes/No

Yes/No

Compute D = Commit/Abort

Crash

Crash
?

?

Figure A. A failure scenario for the two-phase commit
protocol.

lay + receiving-process scheduling delay +
message-processing time.” Such a value is a
constant, known by all the system’s sites.

Most real distributed systems are asyn-
chronous in the sense that δ cannot be es-
tablished.5 So, asynchronous distributed
systems are characterized by the absence of
such an a priori known bound; message
transfer and process-scheduling delays can-
not be predicted and are considered arbi-
trary. Asynchronous distributed systems are
sometimes also called time-free systems.

Crash failures
The underlying communication network

is assumed to be reliable; that is, it doesn’t
lose, generate, or garble messages. The fa-

mous “Generals Paradox” shows that dis-
tributed systems with unreliable communi-
cation do not admit solutions to the NBAC
problem.2

A site or transaction participant can fail
by crashing. Its state is correct until it
crashes. A participant that does not crash
during the transaction execution is also said
to be correct; otherwise, it is faulty. Because
we are interested only in commitment and
not in recovery, we assume that a faulty par-
ticipant does not recover. Moreover, what-
ever the number of faulty participants and
the network configuration, we assume that
each pair of correct participants can always
communicate. In synchronous systems,
crashes can be easily and safely detected by
using time-out mechanisms. This is not the
case in asynchronous distributed systems.

The consensus problem
Consensus6 is a fundamental problem of

distributed systems (see the sidebar “Why
Consensus Is Important in Distributed Sys-
tems”). Consider a set of processes that can
fail by crashing. Each process has an input
value that it proposes to the other processes.
The consensus problem consists of design-
ing a protocol where all correct processes
unanimously and irrevocably decide on a
common output value that is one of the in-
put values.

The consensus problem comprises four
properties:

� Termination. Every correct process
eventually decides some value.

� Integrity. A process decides at most
once.

� Agreement. No two correct processes
decide differently.

� Validity. If a process decides a value,
some process proposed that value.

The uniform consensus problem is defined
by the previous four properties plus the uni-
form agreement property: no two processes
decide differently.

When the only possible failures are
process crashes, the consensus and uniform
consensus problems have relatively simple
solutions in synchronous distributed sys-
tems. Unfortunately, this is not the case in
asynchronous distributed systems, where
the most famous result is a negative one.

4 2 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 1

We consider a synchronous distributed system in which a channel con-
nects each pair of processes and the only possible failure is the crash of
processes. To simplify, assume that only communication takes time and that
a process that receives an inquiry message responds to it immediately (in
zero time). Moreover, let ∆ be the upper bound of the round-trip communi-
cation delay. In this context, a process pi can easily determine the crash of
another process pj. Process pi sets a timer’s time-out period to ∆ and sends
an inquiry message to pj. If it receives an answer before the timer expires, it
can safely conclude that pj had not crashed before receiving the inquiry
message (see Figure B1). If pi has not received an answer from pj when the
timer expires, it can safely conclude that pj

has crashed (see Figure B2).
In an asynchronous system, processes

can use timers but cannot rely on them, ir-
respective of the time-out period. This is
because message transfer delays in asyn-
chronous distributed systems have no up-
per bound. If pi uses a timer (with some
time-out period ∆) to detect the crash of pj,
the two previous scenarios (Figures B1 and
B2) can occur. However, a third scenario
can also occur (see Figure B3): the timer
expires while the answer is on its way to
pi. This is because ∆ is not a correct upper
bound for a round-trip delay.

Only the first and second scenarios can
occur in a synchronous distributed system.
All three scenarios can occur in an asyn-
chronous distributed system. Moreover, in
such a system, pi cannot distinguish the
second and third scenarios when its timer
expires. When considering systems with
process crash failures, this is the funda-
mental difference between a synchronous
and an asynchronous distributed system.

A Fundamental Difference
between Synchronous and Asynchronous

Distributed Systems

∆

Inquiry I am here

Crash

Pi

Pi

(1)

∆
Pi

Pi

(2)

∆
Pi

Pi

(3)

Figure B. Three scenarios of
attempted communication
in a distributed system: (1)
communication is timely;
(2) process pj has crashed;
(3) link (pi, pj) is slow.

The FLP result states that it is impossible to
design a deterministic protocol solving the
consensus problem in an asynchronous sys-
tem even with only a single process crash
failure6 (see the sidebar, “The Impossibility
of Consensus in Asynchronous Distributed
Systems”). Intuitively, this is due to the im-
possibility of safely distinguishing a very
slow process from a crashed process in an

asynchronous context. This impossibility
result has motivated researchers to discover
a set of minimal properties that, when satis-
fied by an asynchronous distributed system,
make the consensus problem solvable.

Failure detection in asynchronous systems
Because message transfer and process-

scheduling delays are arbitrary and cannot

J u l y / A u g u s t 2 0 0 1 I E E E S O F T W A R E 43

In asynchronous distributed systems prone to process crash
failures, Tushar Chandra and Sam Toueg have shown that the
consensus problem and the atomic broadcast problem are
equivalent.1 (The atomic broadcast problem specifies that all
processes be delivered the same set of messages in the same
order. This set includes only messages broadcast by processes
but must include all messages broadcast by correct process.)
Therefore, you can use any solution for one of these problems
to solve the other. Suppose we have a solution to the atomic
broadcast problem. To solve the consensus problem, each
process “atomically broadcasts” its value and the first deliv-
ered value is considered the decision value. (See Chandra and
Toueg’s article1 for information on a transformation from con-
sensus to atomic broadcast). So, all theoretical results associ-
ated with the consensus problem are also applicable to the

atomic broadcast problem. Among others, it is impossible to
design an atomic broadcast protocol in an asynchronous dis-
tributed system prone to process crash failures without consid-
ering additional assumptions limiting the system’s asynchro-
nous behavior.

Also, in asynchronous distributed systems with limited be-
havior that make the consensus problem solvable, consensus
acts as a building block on the top of which you can design
solutions to other agreement or coordination problems (such
as nonblocking atomic commitment, leader election, and
group membership).

Reference
1. T.D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Dis-

tributed Systems,” J. ACM, vol. 43, no. 2, Mar. 1996, pp. 245–267.

Why Consensus Is Important in Distributed Systems

Let’s design a consensus protocol based on the rotating co-
ordinator paradigm. Processes proceed by asynchronous
rounds; in each round, a predetermined process acts as the
coordinator. Let pc be the coordinator in round r, where c = (r
mod n) + 1. Here’s the protocol’s principle:

1. During round r (initially, r = 1), pc tries to impose its value
as the decision value.

2. The protocol terminates as soon as a decision has been
obtained.

Let’s examine two scenarios related to round r:

1. Process pc has crashed. A noncrashed process pi cannot
distinguish this crash from the situation in which pc or its
communication channels are very slow. So, if pi waits for
a decision value from pc, it will wait forever. This violates
the consensus problem’s termination property.

2. Process pc has not crashed, but its communication channel to
pi is fast while its communication channels to pj and pc′ are
very slow. Process pi receives the value vc of pc and decides
accordingly. Processes pj and pc′ , after waiting for pc for a
long period, suspect that pc has crashed and start round r +
1. Let c′ = ((r + 1) mod n) + 1. During round r + 1, pj and pc′
decide on vc′ . If vc ≠ vc′, the agreement property is violated.

This discussion shows that the protocol just sketched does
not work. What is more surprising is that it is impossible to de-
sign a deterministic consensus protocol in an asynchronous
distributed system even with a single process crash failure. This
impossibility result, established by Michael Fischer, Nancy
Lynch, and Michael Paterson,1 has motivated researchers to
find a set of properties that, when satisfied by an asynchro-
nous distributed system, make the consensus problem solvable.
Minimal synchronism,2 partial synchrony,3 and unreliable fail-
ure detectors4 constitute answers to such a challenge. Re-
searchers have also investigated randomized protocols to get
nondeterministic solutions.5

References
1. M. Fischer, N. Lynch, and M. Paterson, “Impossibility of Distributed Con-

sensus with One Faulty Process,” J. ACM, vol. 32, no. 2, Apr. 1985, pp.
374–382.

2. D. Dolev, C. Dwork, and L. Stockmeyer, “On the Minimal Synchronism
Needed for Distributed Consensus,” J. ACM, vol. 34, no. 1, Jan. 1987,
pp. 77–97.

3. C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the Presence of
Partial Synchrony,” J. ACM, vol. 35, no. 2, Apr. 1988, pp. 288–323.

4. T.D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Dis-
tributed Systems,” J. ACM, vol. 43, no. 2, Mar. 1996, pp. 245–267.

5. M. Rabin, “Randomized Byzantine Generals,” Proc. 24th Symp. Foundations
of Computer Science, IEEE Press, Piscataway, N.J., 1983, pp. 403–409.

The Impossibility of Consensus in Asynchronous Distributed Systems

be bounded in asynchronous systems, it’s im-
possible to differentiate a transaction partic-
ipant that is very slow (owing to a very long
scheduling delay) or whose messages are
very slow (owing to long transfer delays)
from a participant that has crashed. This
simple observation shows that detecting
failures with completeness and accuracy in
asynchronous distributed systems is impos-
sible. Completeness means a faulty partici-
pant will eventually be detected as faulty,
while accuracy means a correct participant
will not be considered faulty.

We can, however, equip every site with a
failure detector that gives the site hints on
other sites it suspects to be faulty. Such fail-
ure detectors function by suspecting partici-
pants that do not answer in a timely fash-
ion. These detectors are inherently unreliable
because they can erroneously suspect a cor-
rect participant or not suspect a faulty one.
In this context, Tushar Chandra and Sam
Toueg have refined the completeness and
accuracy properties of failure detection.7

They have shown that you can solve the
consensus problem in executions where un-
reliable failure detectors satisfy some of
these properties:

� Strong completeness. Eventually every
faulty participant is permanently sus-
pected by every correct participant.

� Weak completeness. Eventually every
faulty participant is permanently sus-
pected by some correct participant.

� Weak accuracy. There is a correct par-
ticipant that is never suspected.

� Eventual weak accuracy. Eventually
there is a correct participant that is
never suspected.

Based on these properties, Chandra and
Toueg have defined several classes of failure
detectors. For example, the class of “even-
tual weak failure detectors” includes all fail-
ure detectors that satisfy weak completeness
and eventual weak accuracy. We can use
time-outs to meet completeness of failure
detections because a faulty participant does
not answer. However, as we indicated previ-
ously, accuracy can only be approximate be-
cause, even if most messages are received
within some predictable time, an answer not
yet received does not mean that the sender
has crashed. So, implementations of failure

detectors can only have “approximate” ac-
curacy in purely asynchronous distributed
systems. Despite such approximate imple-
mentations, unreliable failure detectors, sat-
isfying only weak completeness and even-
tual weak accuracy, allow us to solve the
consensus problem.7

Nonblocking atomic commitment
As we mentioned earlier, the NBAC

problem consists of ensuring that all correct
participants of a transaction take the same
decision—namely, to commit or abort the
transaction. If the decision is Commit, all
participants make their updates permanent;
if the decision is Abort, no change is made
to the data (the transaction has no effect).
The NBAC protocol’s Commit/Abort out-
come depends on the votes of participants
and on failures. More precisely, the solution
to the NBAC problem has these properties:

� Termination. Every correct participant
eventually decides.

� Integrity. A participant decides at most
once.

� Uniform agreement. No two partici-
pants decide differently.

� Validity. A decision value is Commit or
Abort.

� Justification. If a participant decides
Commit, all participants have voted Yes.

The obligation property
The previous properties could be satisfied

by a trivial protocol that would always out-
put Abort. So, we add the obligation prop-
erty, which aims to eliminate “unexpected”
solutions in which the decision would be in-
dependent of votes and of failure scenarios.
The obligation property stipulates that if all
participants voted Yes and everything went
well, the decision must be Commit. “Every-
thing went well” is of course related to fail-
ures. Because failures can be safely detected
in synchronous systems, the obligation prop-
erty for these systems is as follows:

S-Obligation: If all participants vote Yes
and there is no failure, the outcome de-
cision is Commit.

Because failures can only be suspected,
possibly erroneously, in asynchronous sys-
tems, we must weaken this property for the

Implementations
of failure

detectors can
have only

“approximate”
accuracy in

purely
asynchronous

distributed
systems.

4 4 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 1

problem to be solvable.8 So, for these sys-
tems we use this obligation property:

AS-Obligation: If all participants vote
Yes and there is no failure suspicion, the
outcome decision is Commit.

A generic NBAC protocol
Next, we describe a generic protocol9 for

the NBAC problem. In this protocol, the
control is distributed: each participant
sends its vote to all participants and no
main coordinator exists.4 Compared to a
central coordinator-based protocol, it re-
quires more messages but fewer communi-
cation phases, thus reducing latency. The
protocol is described by the procedure
nbac (vote, participants), which
each correct participant executes (see Fig-
ure 1). The procedure uses three generic
statements (multicast, exception, and
propose) whose instantiations are specific
to synchronous or to asynchronous distrib-
uted systems. Each participant has a vari-
able outcome that will locally indicate the
final decision (Commit or Abort) at the end
of the protocol execution.

A participant p first sends its vote to all
participants (including itself) by using the
multicast statement (Figure 1, line 1.1).
Then p waits until it has been either

� delivered a No vote from a participant
(line 2.1),

� notified of an exception concerning a
participant q (line 2.2), or

� delivered a Yes vote from each partici-
pant (line 2.3).

At line 2.2, the notification exception(q)
concerns q’s failure and will be instantiated
appropriately in each type of system. Finally,

according to the votes and the exception no-
tifications that p has received, it executes the
statement outcome := propose(x) (lines
3.1 to 3.5) with Commit as the value of x if
it has received a Yes from all participants,
and with Abort in all other cases.

We’ll discuss propose in the next section.

Instantiations
Now we’ll look at instantiations of the

generic protocol for synchronous and asyn-
chronous distributed systems (see Table 1).9

Synchronous systems
For these systems, the instantiations are

Rel_Multicast(v,P), timer expira-
tion, and x.

Multicast(v,P). The Rel_Multicast(v,P)
primitive allows a process to reliably send a
message m to all processes of P. It has these
properties:3,10

� Termination. If a correct process multi-
casts a message m to P, some correct
process of P delivers m (or all processes
of P are faulty).

� Validity. If a process p delivers a mes-
sage m, then m has been multicast to a
set P and p belongs to P (there is no spu-
rious message).

J u l y / A u g u s t 2 0 0 1 I E E E S O F T W A R E 45

pprroocceedduurree NBAC (vote, participants)

bbeeggiinn

(1.1) multicast (vote, participants);

(2.1) wwaaiitt ((ddeelliivveerryy of a vote No from a participant)

(2.2) oorr (∃ q ∈ participants: exception(q) has been notified to p)

(2.3) oorr (ffrroomm eeaacchh q ∈ participants: ddeelliivveerryy ooff a vote Yes)

(2.4));

(3.1) ccaassee

(3.2) a vote No has been delivered → outcome := pprrooppoossee (Abort)

(3.3) an exception has been notified → outcome := pprrooppoossee (Abort)

(3.4) all votes are Yes → outcome := pprrooppoossee (Commit)

(3.5) eenndd ccaassee

eenndd

Figure 1. A generic
nonblocking atomic
commitment (NBAC)
protocol.

Table 1
Instantiations of the Generic Protocol for

Distributed Systems
Generic statement Synchronous instantiation Asynchronous instantiation

Multicast(v,P) Rel_Multicast(v,P) Multisend(v,P)

exception timer expiration failure suspicion

propose(x) x Unif_Cons(x)

� Integrity. A process p delivers a message
m at most once (no duplication).

� Uniform agreement. If any (correct or
not) process belonging to P delivers a
message m, all correct processes of P de-
liver m.

The previous definition is independent
of the system’s synchrony. In synchronous
distributed systems, the definition of
Rel_Multicast(v,P) includes the addi-
tional property3 of timeliness: there is a time
constant ∆ such that, if the multicast of m is
initiated at real-time T, no process delivers
m after T + ∆.

Let f be the maximum number of pro-
cesses that might crash and δ be the a priori
known upper bound defined earlier in the
section “Distributed systems and failures.”
We can show that ∆ = (f + 1)δ. Özalp
Babaoğlu and Sam Toueg describe several
message- and time-efficient implementa-
tions of Rel_Multicast(m,P).3 So, in
our instantiation, Rel_Multicast en-
sures that if a correct participant is deliv-
ered a vote sent at time T, all correct par-
ticipants will deliver this vote by T + ∆.

Exception. Because the crash of a participant
q in a synchronous system can be safely de-
tected, the exception associated with q is
raised if q crashed before sending its vote.
We implement this by using a single timer
for all possible exceptions (there is one pos-
sible exception per participant): p sets a
timer to δ + ∆ when it sends its vote (with
the Rel_Multicast primitive). If the
timer expires before a vote from each par-
ticipant has been delivered, p can safely con-
clude that participants from which votes
have not been delivered have crashed.

Propose(x). In this case, propose is simply
the identity function—that is, propose(x)
= x. So, outcome := propose(x) is
trivially instantiated by outcome := x.

Asynchronous systems

For these systems, the instantiations are
Multisend(v,P), failure suspicion,
and Unif_Cons(x). These instantiations
“reduce” the NBAC problem to the uniform
consensus problem. This means that in
asynchronous distributed systems, if we
have a solution for the uniform consensus
problem, we can use it to solve the NBAC
problem8 (see Figure 2).

Multicast(v,P). The primitive Multi-
send(m,P) is a syntactical notation that
abstracts for each p ∈ P do send(m)
to p end do where send is the usual
point-to-point communication primitive.
Multisend(m,P) is the simplest multicast
primitive. It is not fault tolerant: if the
sender crashes after having sent message m
to a subset P′ of P, message m will not be
delivered to all processes belonging to P but
not to P′. In our instantiation, if a partici-
pant crashes during the execution of Mul-
tisend, it will be suspected by any failure
detector that satisfies the completeness
property.

Exception. When the failure detector associ-
ated with participant p suspects (possibly
erroneously) that a participant q has
crashed, it raises the exception associated
with q by setting a local Boolean flag sus-
pected(q) to the value true. If failure
detectors satisfy the completeness property,
all participants that crashed before sending
their vote will be suspected. (The protocol’s
termination is based on this observation.)

Propose(x). The function propose is in-
stantiated by any subprotocol solving the
uniform consensus problem. Let Unif_Cons
be such a protocol; it is executed by all cor-
rect participants. 5

T he study of the NBAC problem
teaches us two lessons. In the pres-
ence of process crash failures, the

first lesson comes from the generic state-
ment propose. In a synchronous system, a
correct participant can locally take a glob-
ally consistent decision when a timer

4 6 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 1

Applications

Nonblocking atomic commitment

Consensus

Failure detectionPoint-to-point
communication

Figure 2. A protocol
stack.

expires. In an asynchronous system, the par-
ticipant must cooperate with others to take
this decision.

The second lesson comes from failure de-
tectors. They let us precisely characterize
the set of executions in which we can solve
the NBAC problem in purely asynchronous
systems. Weak completeness and eventual
weak accuracy delineate the precise frontier
beyond which the consensus problem can-
not be solved.11

To master the difficulty introduced by the
detection of failures in distributed systems,
it’s necessary to understand the few impor-
tant notions we’ve presented. These notions
should be helpful to researchers and engi-
neers to state precise assumptions under
which a given problem can be solved. In
fact, the behavior of reliable distributed ap-
plications running on asynchronous distrib-
uted systems should be predictable in spite
of failures.

References
1. P.A. Bernstein, V. Hadzilacos, and N. Goodman, Con-

currency Control and Recovery in Database Systems,
Addison-Wesley, Reading, Mass., 1987.

2. J.N. Gray, “Notes on Database Operating Systems,”
Operating Systems: An Advanced Course, Lecture
Notes in Computer Science, no. 60, Springer-Verlag,
Heidelberg, Germany, 1978, pp. 393–481.

3. Ö. Babaoğlu and S. Toueg, “Non-Blocking Atomic
Commitment,” Distributed Systems, S. Mullender, ed.,
ACM Press, New York, 1993, pp. 147–166.

4. D. Skeen, “Non-Blocking Commit Protocols,” Proc.
ACM SIGMOD Int’l Conf. Management of Data,
ACM Press, New York, 1981, pp. 133–142.

5. F. Cristian, “Understanding Fault-Tolerant Distributed
Systems,” Comm. ACM, vol. 34, no. 2, Feb. 1991, pp.
56–78.

6. M. Fischer, N. Lynch, and M. Paterson, “Impossibility
of Distributed Consensus with One Faulty Process,” J.
ACM, vol. 32, no. 2, Apr. 1985, pp. 374–382.

7. T.D. Chandra and S. Toueg, “Unreliable Failure Detec-
tors for Reliable Distributed Systems,” J. ACM, vol. 43,
no. 2, Mar. 1996, pp. 245–267.

8. R. Guerraoui, “Revisiting the Relationship between
Non-Blocking Atomic Commitment and Consensus,”
Proc. 9th WDAG, Lecture Notes in Computer Science,
no. 972, Springer-Verlag, Heidelberg, Germany, 1995,
pp. 87–100.

9. M. Raynal, “Non-Blocking Atomic Commitment in
Distributed Systems: A Tutorial Based on a Generic Pro-
tocol,” to be published in Int’l J. Computer Systems
Science and Eng., vol. 15, no. 2, Mar. 2000, pp. 77–86.

10. V. Hadzilacos and S. Toueg, “Reliable Broadcast and
Related Problems,” Distributed Systems, 2nd ed., S.
Mullender, ed., ACM Press, New York, 1993, pp.
97–145.

11. T.D. Chandra, V. Hadzilacos, and S. Toueg, “The
Weakest Failure Detector for Solving Consensus,” J.
ACM, vol. 43, no. 4, July 1996, pp. 685–822.

J u l y / A u g u s t 2 0 0 1 I E E E S O F T W A R E 47

About the Authors

Michel Raynal is a professor of computer science at the University of Rennes, France.
He is involved in several projects focusing on the design of large-scale, fault-tolerant distrib-
uted operating systems. His research interests are distributed algorithms, operating systems,
parallelism, and fault tolerance. He received his Doctorat dEtat en Informatique from the Uni-
versity of Rennes. Contact him at IRISA Campus de Beaulieu, 35042 Rennes Cedex, France;
raynal@irisa.fr.

Mukesh Singhal is a full professor of
computer and information science at Ohio State University, Columbus. He is also the program
director of the Operating Systems and Compilers program at the National Science Foundation.
His research interests include operating systems, database systems, distributed systems, per-
formance modeling, mobile computing, and computer security. He has coauthored Advanced
Concepts in Operating Systems (McGraw-Hill, 1994) and Readings in Distributed Computing
Systems (IEEE CS Press, 1993). He received his Bachelor of Engineering in electronics and com-
munication engineering with high distinction from the University of Roorkee, Roorkee, India,
and his PhD in computer science from the University of Maryland, College Park. He is a fellow
of the IEEE. Contact him at the Dept. of Computer and Information Science, Ohio State Univ., Columbus, OH 43210;
singal@cis.ohio-state.edu; www.cis.ohio-state.edu/~singhal.

ArticlesFO
R

IEEE

CALLCALL
Software Engineering
of Internet Software

In less than a decade, the Internet has grown from a little-known back road of nerdsinto a central highway for worldwide commerce, information, and entertainment. This shifthas introduced a new language. We speak of Internet time, Internet software, and the riseand fall of e-business. Essential to all of this is the software that makes the Internet work.From the infrastructure companies that create the tools on which e-business runs to theWeb design boutiques that deploy slick Web sites using the latest technology, software liesbehind the shop windows, newspapers, and bank notes.
How is this new Internet software different than the software created before every-thing became e-connected? Are the tools different? Are the designs different? Are theprocesses different? And have we forgotten important principles of software engineeringin the rush to stake claims in the new webified world?
We seek original articles on what it means to do Internet software, in terms that areuseful to the software community at large and emphasizing lessons learned from practicalexperience. Articles should be 2,800–5,400 words, with each illustration, graph, or tablecounting as 200 words. Submissions are peer-reviewed and are subject to editing forstyle, clarity, and space. For detailed author guidelines, see computer.org/software/author.htm or contact software@computer.org.

Guest Editors:

Elisabeth Hendrickson, Quality Tree Software, Inc.
esh@qualitytree.com

Martin Fowler, Chief Scientist, Thoughtworks
fowler@acm.org

Publication:
March/April 2002

Submission deadline:
15 August 2001

