
16 communications of the acm | February 2010 | vol. 53 | no. 2

news

P
h

o
t

o
g

r
a

p
h

 b
y

 S
a

ll

i
e

 D
e

a
n

 S
h

a
t

z

W
he n the philosopher

Bertrand Russell in-
vented type theory at
the beginning of the
20th century, he could

hardly have imagined that his solution
to a simple logic paradox—defining
the set of all sets not in themselves—
would one day shape the trajectory of
21st century computer science.

Once the province of mathemati-
cians and social scientists, type theory
has gained momentum in recent years
as a powerful tool for ensuring data
consistency and error-free program
execution in modern commercial pro-
gramming languages like C#, Java,
Ruby, Haskell, and others. And thanks
to recent innovations in the field, type
systems are now moving beyond the
realm of data structure and into more
complex domains like security and net-
working.

First, a quick primer. In program-
ming languages, a type constitutes a
definition of a set of values (for example,
“all integers”), and the allowable op-
erations on those values (for example,
addition and multiplication). A type
system ensures the correct behavior of
any program routine by enforcing a set
of predetermined behaviors. For exam-
ple, in a multiplication routine, a type
system might guarantee that a program
will only accept arguments in the form
of numerical values. When other values
appear—like a date or a text string—
the system will return an error. For
programmers, type systems help pre-
vent undetected execution errors. For
language implementers, they optimize
execution and storage efficiency. For ex-
ample, in Java integers are represented
in the form of 32 bits, while doubles
are represented as 64 bits. So, when a
Java routine multiplies two numbers,
the type system guarantees they are ei-
ther integers or doubles. Without that

guarantee, the runtime would need to
conduct an expensive check to deter-
mine what kinds of numbers were be-
ing multiplied before it could complete
the routine.

What distinguishes a type system
from more conventional program-level
verification? First, a type system must
be “decidable”; that is, the checking
should happen mechanically at the ear-
liest opportunity (although this does not
have to happen at compilation time; it
can also be deferred to runtime). A type
system should also be transparent; that
is to say, a programmer should be able
to tell whether a program is valid or not
regardless of the particular checking al-
gorithm being used. Finally, a “sound”
type system prevents a program from
performing any operation outside its
semantics, like manipulating arbitrary
memory locations.

Languages without a sound type
system are sometimes called unsafe or
weakly typed languages. Perhaps the
best-known example of a weakly typed

system is C. While C does provide types,
its type checking system has been inten-
tionally compromised to provide direct
access to low-level machine operations
using arbitrary pointer arithmetic, cast-
ing, and explicit allocation and deallo-
cation. However, these maneuvers are
fraught with risk, sometimes resulting
in programs riddled with bugs like buf-
fer overflows and dangling pointers that
can cause security vulnerabilities.

By contrast, languages like Java,
C# , Ruby, Javascript, Python, ML, and
Haskell are strongly typed (or “type
safe”). Their sound type systems catch
any type system violations as early as
possible, freeing the programmer to
focus debugging efforts solely on valid
program operations.

Static and Dynamic Systems
Broadly speaking, type systems come in
two flavors: static and dynamic. Stati-
cally typed languages catch almost all
errors at compile time, while dynami-
cally typed languages check most er-
rors at runtime. The past 20 years have
seen the dominance of statically typed
languages like Java, C# , Scala, ML, and
Haskell. In recent years, however, dy-
namically typed languages like Scheme,
Smalltalk, Ruby, Javascript, Lua, Perl,
and Python have gained in popularity
for their ease of extending programs at
runtime by adding new code, new data,
or even manipulating the type system at
runtime.

Statically typed languages have re-
strictions and annotations that make
it possible to check most type errors at
compile time. The information used
by the type checker can also be used by
tools that help with program text-edit-
ing and refactoring, which is a consid-
erable advantage for large modular pro-
grams. Moreover, static type systems
enable change. For example, when an
important data structure definition is

Type Theory
Comes of Age
Type systems are moving beyond the realm of data structure
and into more complex domains like security and networking.

Science | doi:10.1145/1646353.1646361	 Alex Wright

Art in
Development

Benjamin C. Pierce,
University of Pennsylvania.

news

february 2010 | vol. 53 | no. 2 | communications of the acm 17

changed in a larger program, the type
system will automatically point to all
locations in the program that also need
change. In a dynamically typed lan-
guage it would be extremely difficult to
make such changes in larger programs
as it would be not known what other
parts are affected by the change. On
the other hand, some correct programs
may be rejected by a static type system
when it is not powerful enough to guar-
antee soundness.

 In an effort to make static type sys-
tems more flexible, researchers have
developed a number of extensions like
interface polymorphism, a popular ap-
proach introduced by object-oriented
languages like Simula, C++, Eiffel, Java,
or C#. This method allows for inclusion
between types, where types are seen as
collections of values. So, an element of
a subtype—say, a square—can be con-
sidered as an element of its supertype—
say, a polygon—thus allowing the ele-
ments of different but related types to
be used flexibly in different contexts.

Another form of polymorphism,
found in almost all programming lan-
guages, is ad hoc polymorphism (also
called overloading) where code be-
haves in different ways depending on
the type. This approach has found its
fullest expression in Haskell, thanks in
part to the efforts of Philip Wadler, pro-
fessor of theoretical computer science
at the University of Edinburgh. “When
we designed Haskell, it quickly became
clear that overloading was important
and that there was no good solution,”
says Wadler. “We needed overloading
for equality, comparison, arithmetic,
display, and input.”

The Haskell system has evolved con-
siderably over the years, thanks to the
contributions of a far-flung group of
contributors. “Once we’d come up with
the initial idea of type classes, it led to
a vast body of work, all sorts of clever
researchers coming up with neat exten-
sions to the system, or applying it do
things that we’d never thought it could
do,” says Wadler. Today, Haskell ranks
as the programming world’s premier
case study in ad hoc polymorphism.

The dream of unifying static and dy-
namic type systems has long fascinated
researchers. Today, several computer
scientists are probing the possibility of
merging these approaches. Wadler is
pursuing a promising line of research

called blame calculus that attempts to
incorporate both static and dynamic
typing, while Erik Meijer, a language ar-
chitect at Microsoft Research, proposes
to use “static typing when possible, dy-
namic typing when necessary.”

Security Type Systems
In recent years, researchers have also
been exploring type systems capable
of capturing a greater range of pro-
gramming errors such as the public
exposure of private data. These emerg-
ing type systems are known as security
type systems. Whereas a traditional
type system enforces rules by assign-
ing values to data types, a security type
system could apply the same principle
of semantic checking to determine the
owner of a particular piece of informa-
tion. Those annotations could then
help ensure the integrity of data flow-
ing through the system. Two promis-
ing security research projects include
the AURA programming language,
developed by Steve Zdancewic, asso-
ciate professor of computer science
at University of Pennsylvania, and Jif,
a Java-based security-typed language
developed by Andrew Myers, associate
professor of computer science at Cor-
nell University.

Another interesting application of
type checking involves hybridizing type
systems and theorem provers. “His-
torically, there have been two paral-
lel tracks in the software engineering
world: type systems and theorem prov-
ers. The type systems track has always
emphasized lightweight methods,”

says Benjamin C. Pierce, professor of
computer science at the University of
Pennsylvania, “but the formal methods
people aren’t interested in that. Today,
they’re starting to meet in the middle.”

Pierce points to refinement types,
which are types qualified by a logi-
cal constraint; an example is the type
of even numbers, that is, the type of
integers qualified by the is-an-even-
number constraint. While the theory
for refinement types has existed for
a long time, only recent progress in
automatic theorem proving makes re-
finement types suddenly practical. A
promising security project was recently
performed by Andrew D. Gordon, prin-
cipal researcher at Microsoft Research
Cambridge, and colleagues. They add-
ed a system of refinement types to the
F# programming language and were
able to verify security properties of F#
implementations of cryptographic pro-
tocols by type checking.

While type theory has matured con-
siderably over the past 100 years, it still
remains an active research arena for
computer scientists. As type systems
move beyond the realm of data consis-
tency and into headier computational
territories, the underlying principles
of type theory are beginning to shape
the way researchers think about pro-
gram abstractions at a deep—even
philosophical—level. Bertrand Russell
would be proud.	

Further Reading

Hindley, J.R.
Basic Simple Type Theory. Cambridge
University Press, New York, 2008.

Pierce, B.
Types and Programming Languages. MIT
Press, Cambridge, MA, 2002.

Flanagan, C.
Hybrid type checking. SIGPLAN Notices 41,
1, Jan. 2006.

Cardelli, L.
Type systems. The Computer Science and
Engineering Handbook, Allen B. Tucker
(ed.). CRC Press, Boca Raton, FL, 1996.

Church, A.
A formulation of the simple theory of types.
Journal of Symbolic Logic 5, 2, 1940.

Alex Wright is a writer and information architect who
lives and works in Brooklyn, NY. Daan Leijen and Wolfram
Schulte of Microsoft Research contributed to the
development of this article.

© 2010 ACM 0001-0782/10/0200 $10.00

The theory for
refinement types
has existed for
a long time, but
recent progress in
automatic theorem
proving makes
refinement types
suddenly practical.

