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Laurent Lefèvre2 and Thierry Gautier2

Abstract
In this article, we analyze performance and energy consumption of five OpenMP runtime systems over a non-uniform
memory access (NUMA) platform. We also selected three CPU-level optimizations or techniques to evaluate their impact
on the runtime systems: processors features Turbo Boost and C-States, and CPU Dynamic Voltage and Frequency Scaling
through Linux CPUFreq governors. We present an experimental study to characterize OpenMP runtime systems on the
three main kernels in dense linear algebra algorithms (Cholesky, LU, and QR) in terms of performance and energy
consumption. Our experimental results suggest that OpenMP runtime systems can be considered as a new energy
leverage, and Turbo Boost, as well as C-States, impacted significantly performance and energy. CPUFreq governors had
more impact with Turbo Boost disabled, since both optimizations reduced performance due to CPU thermal limits. An LU
factorization with concurrent-write extension from libKOMP achieved up to 63% of performance gain and 29% of energy
decrease over original PLASMA algorithm using GNU C compiler (GCC) libGOMP runtime.
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1. Introduction

Energy efficiency is one of the five major challenges that

should be overcome in the path to exascale computing

(Bergman et al., 2008). Despite improvements in energy

efficiency, the total energy consumed by supercomputers

is still increasing due to the even quicker increase in com-

putational power. High energy consumption is not only a

problem of electricity costs but also impacts greenhouse

emissions and dissipating the produced heat can be difficult.

As the ability to track power consumption becomes more

commonplace, with some job schedulers supporting tracking

energy use (Yang et al., 2013), soon users of high perfor-

mance computing (HPC) systems may have to consider both

how many CPU hours they need and how much energy.

Energy budget limitation imposes a high pressure to the

HPC community making energy consideration a prominent

research field. Most of the gain will come from technology

by providing more energy-efficient hardware, memory, and

interconnect. Nevertheless, recent processors integrate

more and more leverages to reduce energy consumption

(e.g. classical Dynamic Voltage and Frequency Scaling

(DVFS) and deep sleep states) and low-level runtime

algorithms provide orthogonal leverages (e.g. dynamic

concurrency throttling (DCT)). However, few of these

leverages are integrated and employed in today’s local-

level software stack such as middleware, operating system,

or runtime library. Due to the complexity of this statement,

we restricted our investigation to local node energy con-

sumption by HPC OpenMP applications.

OpenMP is an application programming interface (API)

standard to express parallel portable programs. Most of the

controls are implementation defined and rely on the spe-

cific OpenMP programming environment used. The

OpenMP standard does not impose any constraint on imple-

mentations. Even if there are more precise specifications,

for example, mapping of threads to cores, it is very tricky to

precisely control performance or energy consumption using

what OpenMP specification proposes (Bari et al., 2016).
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Previous works have dealt with a specific OpenMP runtime

(Li et al., 2010; Lively et al., 2011; Marathe et al., 2015;

Nandamuri et al., 2014; Porterfield et al., 2013; Su et al.,

2012) that may be difficult to generalize to other OpenMP

runtime systems without strong development effort. To the

knowledge of the authors, there is no related work compar-

ing OpenMP runtime systems in order to analyze perfor-

mance and energy consumption.

In this article, we analyzed performance and energy

consumption of five OpenMP runtime systems over a

non-uniform memory access (NUMA) system. We also

selected three CPU-level optimizations or techniques to

evaluate their impact on the runtime systems: processors

features Turbo Boost and C-States, and CPU DVFS

through Linux CPUFreq governors. We restrict our experi-

ments on three dense linear algebra algorithms: Cholesky,

LU, and QR matrix factorizations. Source codes are based

on KASTORS (Virouleau et al., 2014) benchmark suite and

the state-of-the-art PLASMA library using its new

OpenMP implementations (YarKhan et al., 2016) that rely

on OpenMP tasks with data dependencies.

The article is an extended version of the article

presented at the 8th Workshop on Applications for

Multi-Core Architectures (Lima et al., 2017). The contri-

butions of this article are as follows:

� We present early experiments of performance and

energy consumption over OpenMP runtime systems.

� We report the impact of three CPU-level optimiza-

tions in order to present the respective gains with

different combinations.

� Small algorithmic and runtime improvements may

allow significant performance gain and energy

reduction on dense linear algebra algorithms. An

LU factorization with concurrent-write (CW) access

mode achieved up to 63% in performance gain and

29% in energy reduction over original LU algorithm

using GNU C compiler (GCC) libGOMP runtime.

� In addition, our findings suggest that Turbo Boost

and C-States had significant impact on performance

and energy. CPUFreq governors had more impact

with Turbo Boost disabled since Turbo Boost with

the performance governor reduced performance due

to CPU thermal limits.

The remainder of the article is organized as follows.

Section 2 presents the related work. Section 3 gives some

details of the OpenMP task programming model and an

overview about five runtime implementations. Section 4

details the experimental hardware and methodology used.

Our experimental results are presented in Section 5.

Finally, Sections 6 and 7, respectively, present the discus-

sion and conclude the article.

2. Related work

Multiple techniques or leverages dealing with the energy–

performance trade-off are exposed and used in the literature.

Most research in energy efficiency is devoted to DVFS

(Zhuravlev et al., 2013) which is a well-known technique to

reduce energy consumption by slowing down the speed of

processors. Benoit et al. (2017) demonstrate the challenge

of using the shutdown and wakeup leverages for large-scale

HPC infrastructure without altering the throughput of

needed computation. In the work of Ribic and Liu

(2014), DVFS is used to lower the speed of threads that

are not in the critical path with a warranty on performance.

Etinski et al. (2010) bind DVFS with EASY backfilling job

scheduling to answer possible system load variation in an

energy-efficient way. Considering communications

between nodes, Rountree et al. (2009) reduce the frequency

of tasks which would block for message passing interface

(MPI) communication. Laros et al. (2012) analyze the

effects of both DVFS and network bandwidth scaling.

Another commonly used technique is DCT that

changes the number of computing threads at runtime.

Other works use the simplicity proposed by OpenMP to

vary the number of threads, for energy efficiency. Curtis

Maury et al. (2006) and Porterfield et al. (2013) defend

DCT and underline the fact that using OpenMP to control

the number of threads could be energy efficient, depend-

ing on the algorithm or the chosen hardware. De Matteis

and Mencagli (2017) use DVFS and DCT in the context

data stream processing applications.

In addition to DVFS, Intel processors support duty cycle

modulation (Schöne et al., 2016) that “squashes” CPU

clock without changing the real frequency for each individ-

ual core. Zhang et al. (2009) use duty cycling to efficiently

manage on-chip shared resources. Bhalachandra et al.

(2015) employed this technique in MPI applications, while

Cicotti et al. (2014) designed a library to save energy with

duty cycling and DVFS. Wang et al. (2015) used DCT and

duty cycling on OpenMP parallel loops.

Many of the related works made experiments based on

NASA advanced computing (NAS) benchmarks (Curtis

Maury et al., 2006; Freeh et al., 2007; Li et al., 2010;

Marathe et al., 2015; Sundriyal et al., 2014) that are widely

accepted as representative of scientific applications. Lagra-

vière et al. (2015) investigate the MFlops/Watt metric

between MPI, unified parallel C (UPC), and OpenMP.

Schöne and Molka (2014) propose a framework to dyna-

mically change configuration of hardware and software.

They applied their method to reduce the energy consump-

tion of parallel regions where stalled operation may occur.

Previous works show that various energy behaviors of

computing nodes are possible through various leverages

(DVFS, DCT, etc.). But none of the previous work focus

on OpenMP runtime systems as a leverage. None of the

previous work dealt with the energy–performance trade-

off and thus underlined possible variability concerning

energy and performance for existing runtime systems.

Thus, to the knowledge of the authors, no related work

was trying to compare several OpenMP runtime libraries

together for various representative workloads, as pre-

sented in our article.
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We use state-of-the-art PLASMA library (YarKhan

et al., 2016), on three main kernels in dense linear algebra

(Cholesky, LU, and QR factorizations), that implements

dependent tasks model. This model is new and never

addressed in related works. Nandamuri et al. (2014) and

Porterfield et al. (2013) based their experiments using the

BOTS (Duran et al., 2009) benchmarks that require only

the independent tasks.

3. OpenMP task programming model
and implementations

In 2013, the OpenMP Architecture Review Board intro-

duced, in the OpenMP revision 4.0, a new way of expres-

sing task parallelism using OpenMP, through the task

dependencies. This section introduces the task dependency

programming model targeted by the selected benchmark

suites. We also present how the model is implemented in

various runtime libraries.

3.1. Dependent task model

OpenMP-dependent task model allows to define dependen-

cies between tasks using declaration of accesses to memory

with in, out, or inout. Two tasks are independent (or con-

current) if and only if they do not violate the data depen-

dencies of a reference sequential execution order.1

Figure 1 illustrates an LU factorization based on

PLASMA. The programmer declares tasks and the accesses

in, inout they made to a memory region (here only

lvalue or memory reference, i.e. pointer).

The OpenMP library computes tasks and dependencies

at runtime and schedules concurrent tasks on the available

processors. The strategy for task dependencies and task

scheduling depends on the runtime implementation. Nev-

ertheless, their implementations impact the performance

and the energy consumption. Moreover, the absence of

precise OpenMP specification about the task scheduling

algorithm is the key point to allow research to improve

performance and energy efficiency with implementation

concerns.

3.2. Runtime system implementations

Table 1 summarizes the properties of five OpenMP runtime

systems.

libGOMP is the OpenMP runtime that comes with the

GCC compiler. Dependencies between tasks are com-

puted through a hash table that maps data (pointer) to the

last task writing the data. Ready tasks are pushed into

several scheduling dequeues. The main dequeue stores all

the tasks generated by the threads of a parallel region.

Tasks seem to be inserted after the position of their parent

tasks in order to keep an order close to the sequential

execution order. Because threads share the main dequeue,

serialization of operations is guaranteed by a pthread

mutex which is a bottleneck for scalability. To avoid over-

head in task creation, libGOMP implements a task throt-

tling algorithm that serializes task creation when the

number of pending tasks is greater than a threshold pro-

portional to the number of threads.

libOMP was initially the proprietary OpenMP runtime

of Intel for its C, Cþþ, and Fortran compilers. Now it is

also the target runtime for the LLVM/Clang compiler and

sources are open to community. libOMP manages depen-

dencies in the same way that libGOMP by using a hash

table. Memory allocation during task creation relies on a

fast thread memory allocator. libOMP task scheduling is

based on Cilk almost non-blocking work stealing algorithm

(Frigo et al., 1998), but dequeue operations are serialized

using locks. Nevertheless, it implies distributed dequeues

management with high throughput of dequeue operations.

libOMP also implements a task throttling algorithm by

using bounded size dequeue.

OmpSs (Bueno Hedo et al., 2012) is a runtime system

developed at the Barcelona Supercomputing Center (Bar-

celona, Catalonia, Spain), compatible with the OpenMP

specification. It has a specific compiler, called Mercurium,

that transforms OpenMP directives to calls to Nanosþþ
runtime entrypoints. As libGOMP and libOMP, OmpSs

computes task dependencies at task creation using hash

map. In our experiments, we select the breadth-first

Figure 1. LU factorization with OpenMP-dependent task.

Table 1. Characteristics of OpenMP runtime systems.

Name Dependencies Task scheduling Remarks

libGOMP Hash table Centralized list Task throttling
libOMP Hash table Work stealing Bounded dequeue
OmpSs Hash table Socket-aware

Work stealing
Xkaapi Hash table Non-blocking Task affinity

Work stealing
libKOMP Resizable Non-blocking Task affinity

Hash table Work stealing Concurrent write
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scheduler. In our experiments, we selected the Socket-

aware scheduler (socket) which is a work-stealing–based

task scheduler with distributed dequeues implementations.

XKaapi (Gautier et al., 2013) is a task library for

multi-CPU and multi-GPU architectures which provides

binary compatible library with libGOMP (Broquedis

et al., 2012). Task scheduling is based on the almost

non-blocking work stealing algorithm from Cilk (Frigo

et al., 1998) with extension to combine steal requests in

order to reduce overhead in stealing (Tchiboukdjian

et al., 2013). Moreover, XKaapi computes dependencies

on steal request, which is a perfect application of the

work first principle to report overhead in task creation to

critical path. The XKaapi-based OpenMP runtime also

has support to some OpenMP extensions such as task

affinity (Virouleau et al., 2016) that allows to schedule

tasks on NUMA architecture and to increase perfor-

mance by reducing memory transfer and thus memory

energy consumption.

libKOMP (Gautier and Virouleau, 2015) is a redesign

of Broquedis et al. (2012) on a top of the Intel runtime

libOMP. It includes following features coming mainly

from XKaapi: the dequeue management and work steal-

ing with request combining; task affinity specific work

stealing heuristic; a dynamically resized hash map that

avoids high conflicts when finding dependencies for

large tasks’ graph; and tracing tool based on the

OpenMP OMPT API; and finally, a task CW extension

with a Clang modification2 to provide the OpenMP

directive clause. This latter extension allows better par-

allelism and it is similar to the task reduction feature

currently under discussion in the OpenMP architecture

review board.

3.3. Discussion

In our study of the mentioned OpenMP runtime systems,

none of them include energy leverage such as thread throt-

tling or DVFS. Nevertheless, their different task scheduling

algorithms may impact energy efficiency. The main

dequeue accesses in libGOMP serialize threads using a

POSIX mutex. On Linux, the mutex will block waiting

threads after short period of active polling which ensure

that few core cycles will be wasted in the synchronization.

On the other hand, libOMP, XKaapi, and libKOMP

work stealing actively poll dequeues until the program ends

or a task is found. In order to reduce activity during polling,

libOMP and libKOMP may block threads after an unsuc-

cessful search of work by 200 ms (default value). Once

work is found, all threads are woken up.

4. Tools and methods

This section details the hardware configuration we experi-

mented on and the OpenMP runtime systems we compared.

We also give hints about the methodology used to process

the collected data using statistical tools R.

4.1. Evaluation platform

Our experimental platform was an SGI UV 2000 machine

composed of eight NUMA nodes with one Intel Xeon E5-

4617 (Sandy Bridge) processor each (total eight proces-

sors) and six cores per processor (48 cores total) running

at 2.9 or 3.2 GHz with Turbo Boost and 512 GB of main

memory. The processor has Turbo Boost 2.0 technology,

and six idle states of C-States available: POLL C1-SNB

C1E-SNB C3-SNB C6-SNB C7-SNB. The operating sys-

tem was a Debian with Linux kernel 4.9.0-1 with the Intel

P-State driver, which supports two CPUFreq governors:

powersave and performance. Both DVFS governors have

frequency limits from 1.20 GHz to 3.40 GHz.

4.2. Software description

4.2.1. Benchmarks. We used kernels from two benchmark

suites: the KASTORS (Virouleau et al., 2014) benchmark

suite and the OpenMP-based PLASMA benchmark. Both

benchmark suites tackle the same computational problems

but use different algorithms in some cases.

KASTORS was built from PLASMA version 2.6.0

(released in December 2013) that was implemented over

a specific task management library called QUARK. The

OpenMP-based PLASMA is a new version of PLASMA

over OpenMP directives instead of QUARK library. We

compare OpenMP-based PLASMA version 82f89ee.3

We focused our study on three dense linear algebra

kernels:

� a Cholesky factorization (dpotrf);

� an LU factorization (dgetrf); and

� a QR factorization (dgeqrf).

All these linear algebra kernels we used rely on the

BLAS routines; we used the implementation of OpenBLAS

version 0.2.19. Cholesky and QR algorithms are the same

in both KASTORS and PLASMA. Nonetheless, LU had

three versions: KASTORS from original PLASMA ver-

sion, KASTORS extended with CW access, and PLASMA

from the OpenMP-based version.

4.2.2. Runtime systems. We compared the following runtime

systems during our experiments:

� libGOMP: The OpenMP implementation from GNU

that comes with GCC 6.3.0.

� libOMP: A port of the Intel OpenMP open-source

runtime to LLVM release 4.0.

� libKOMP (Gautier and Virouleau, 2015): A research

runtime system, based on the Intel OpenMP runtime,

developed at INRIA. It offers several nonstandard

extensions to OpenMP. We evaluate the CW feature

in our experiments coupled with Cilk T.H.E work

stealing protocol. We make experiments with ver-

sion 54f7a28.4

� XKaapi (Gautier et al., 2013): Research runtime sys-

tem developed at INRIA. It has lightweight task
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creation overhead, and it offers several nonstandard

extensions to OpenMP (Broquedis et al., 2012). We

evaluate its version efa5fdf.5

� OmpSs (Bueno Hedo et al., 2012): A runtime system

developed at the Barcelona Supercomputing Center.

The reported results are based on the 17.12 version.6

In all experiments, we set OMP_WAIT_POLICY

environment variable to passive, which means that

threads should not consume CPU power while waiting.

OmpSs has an equivalent option to Nanoþþ through

--enabled-sleep. XKaapi runtime does not imple-

ment a waiting policy.

In our experiments, we compared the runtime systems

using KASTORS benchmark suite, except for PLASMA

configuration that is based on the OpenMP-based version

running over GCC libGOMP runtime.

4.3. Energy measurement methodology

Since several metrics have to be considered depending on

the objective, we consider performance (GFlop/s) and

energy consumption (energy-to-solution). GFlop/s is mea-

sured by the each benchmark itself: It corresponds to the

algorithmic count of the number of floating point opera-

tions over the elapsed time, using fact that matrix–matrix

product does not rely on a fast algorithm such as Strassen-

like algorithm. Times are get using the Linux clock_

gettime function with CLOCK_REALTIME clock.

We employed the Intel running average power limit

(RAPL) feature as source of data acquisition for energy

measurement. It exposes the energy consumption of several

components on the chip (such as the processor package and

the DRAM) through model specific registers (MSRs). Due

to access limitation of MSRs on the tested system, we

designed a small tool querying periodically the RAPL

counters based on LIKWID (Treibig et al., 2011): energy

consumption for the whole package (PWR_PKG_ENERGY),

for the cores (PWR_PP0_ENERGY), for the DRAM

(PWR_DRAM_ENERGY), as well as the core temperature

(TEMP_CORE). The tool gets the counter values periodi-

cally and associates them with a time stamp.

4.4. Experimental methodology

All benchmarks are composed of two steps: The first allo-

cates and initializes a matrix; the second step is the com-

putation. We report execution time only from the

computation step. Each experiment was repeated at least

30 times, each computation on a newly random matrix (as

implemented by the benchmark). In parallel of the compu-

tation, we monitored the system by collecting various

energy counters from RAPL.

We selected three CPU-level optimizations (Orgerie

et al., 2014) in order to evaluate their impact on perfor-

mance and energy over the runtime systems: processor

features Turbo Boost and C-States (Rotem et al., 2012),

and CPU DVFS through Linux CPUFreq governors. Intel

Turbo Boost is an overclocking mechanism that allows to

the processor to raise core frequencies as long as the ther-

mal and power limits are not exceeded. The C-States fea-

ture corresponds to CPU idle states. Deeper C-States offer

more power savings but at the cost of longer latency to

enter and exit the C-State. On Linux, CPUFreq allows the

control of P-States, which defines the frequencies at

which a processor can operate, by governors that choose

a frequency for the processor to use. The available gov-

ernors on our experimental platform were powersave that

chooses the lowest frequency and performance that

chooses the highest frequency.

For each computation, we collected performance

(GFlop/s) time stamped by the beginning and the end of

the computation. This two time stamps were used in data

post-processing to compute energy consumed by the com-

putation between the two time stamps. Values were inter-

polated by linear function if missing in the collected energy

values sampled periodically. Post-processing employs R

script to compute energy per computation and to output

basic statistic for each configuration. In our experimental

results, energy values were the mean computed among the

at least 30 computations of each configuration.

5. Experimental results

The goal of our experiments is to evaluate performance and

energy consumption of OpenMP runtime systems and the

impact of three CPU-level optimizations. Our objectives

are as follows:

1. evaluate the runtime impact on performance and

energy, as well as the CPU-level techniques (Sec-

tion 5.1);

2. analyze the correlation coefficient of CPU optimi-

zations over performance and energy (Section 5.2);

and

3. assess the impact of runtime extensions on perfor-

mance of LU (Section 5.3).

The presented runtime systems have been experimented

on the two benchmark suites presented in Section 4.2.1. We

build two configurations of libKOMP using two sets of

options (Gautier and Virouleau, 2015). On the following,

libKOMP refers to the runtime version configured with

T.H.E Cilk work stealing queue and requests combining

protocol; and libKOMPþCW is the same configuration

than libKOMP with addition to support CW extension used

in the KASTORS LU code dgetrf (Virouleau et al., 2014).

In addition, PLASMA refers to the OpenMP-based

PLASMA implementation compiled with GCC and the

libGOMP runtime.

5.1. Runtime impact

Figure 2 shows performance results with a matrix size of

32,768 � 32,768 and over all machine resources available,
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and Figure 3 illustrates energy results from RAPL memory

(DRAM) and processor (PKG) counters. Each configura-

tion color represents the combination of the three CPU-

level optimizations Turbo Boost (on and off), C-States (all

enabled and none), and CPUFreq governor (performance

and powersave). Table 2 summarizes the best results over

each metric collected, that is, performance, DRAM energy

counter, PKG energy counter, and DRAMþPKG energy

counters.

In all cases, libKOMP attained the best performance

results, followed by XKaapi and libGOMP for Cholesky,

XKaapi and libKOMP (without CW) for LU, and PLASMA

and XKaapi for QR. OmpSs had similar performance to

PLASMA on Cholesky and performed worst than others on

LU. Nonetheless, we were not able to evaluate OmpSs with

QR due to a runtime error. The performance gains of lib-

KOMP over libGOMP were 9.7% for Cholesky, 63.8% for

LU, and 9.4% for QR. In addition, the CPU-level optimiza-

tions for these results were Turbo Boost enabled, powersave

governor, and all C-States disabled. Clearly, the CW feature

of LU contributed to the significant gain of libKOMP.

In energy, libKOMP had better energy results with Cho-

lesky and LU, while QR had lower energy consumption

with PLASMA implementation and libGOMP. The CPU-

level optimizations for these results were Turbo Boost dis-

abled, performance governor, and all C-States enabled for

Cholesky and QR, and all disabled for LU.

The cost of energy-efficient cases in performance was

not significant on the three benchmarks. Comparing the

best cases of energy over the best cases in performance,

Cholesky had a reduction of 5.12% in performance, while

LU and QR had 1.76% and 9.31% reduction, respectively.

Although, energy reduction was of 8.51%, 10.88%, and

11.71% for Cholesky, LU, and QR, respectively.

Regarding the CPU-level techniques, it seems that

Turbo Boost and C-States contributed to the performance

gains, and CPUFreq governors had more impact on energy

than performance. It was expected that the best perfor-

mance cases had Turbo enabled and all C-States disabled;

still, those cases had powersave as CPU DVFS governor.

Besides, energy-efficient cases had in most cases Turbo

disabled, all C-States enabled, and performance as CPU

frequency governor.

In order to investigate the performance gains of power-

save governor, we analyzed the core temperature counter

from RAPL over Cholesky with libKOMP runtime as
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Figure 2. Performance results of Cholesky, LU, and QR over the UV2000 machine. The matrix size was 32,768 � 32,768 with 352 �
352 of block size.
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Table 2. Overview of the best results.a

Method Runtime Turbo Boost C-States Governor GFlop/s RAPL PKG RAPL DRAM

Performance
Cholesky libKOMP Enabled None Powersave 732.45 13.02 2.13
LU libKOMPþCW Enabled None Powersave 383.40 42.83 7.98
QR libKOMP Enabled None Powersave 433.77 83.36 15.31

RAPL PKGþDRAM
Cholesky libKOMP Disabled All Performance 694.95 11.62 2.24
LU libKOMPþCW Disabled None Performance 376.64 37.12 8.16
QR PLASMA Disabled All Performance 393.40 71.42 15.70

RAPL PKG
Cholesky libKOMP Disabled All Performance 694.95 11.62 2.24
LU libGOMP Disabled All Powersave 225.41 36.60 12.53
QR PLASMA Disabled All Performance 393.40 71.42 15.70

RAPL DRAM
Cholesky XKaapi Enabled None Powersave 723.23 13.22 2.11
LU libKOMPþCW Enabled None Powersave 383.40 42.83 7.98
QR PLASMA Enabled None Powersave 404.92 81.07 15.19

aHigher is better for performance and lower is better in energy.
RAPL: running average power limit.
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illustrated in Figure 4. We collected each socket tempera-

ture through a series of Cholesky executions, including an

interval between executions of 30 s, and computed the

mean of all readings per socket. The performance governor

had greater temperature readings than powersave on all

sockets using Turbo Boost, while both governors had sim-

ilar temperature readings without Turbo Boost. It seems

that tuning all CPU-level optimizations to target perfor-

mance reached the thermal limits of the processor sockets

and degraded performance.

5.2. Correlation analysis

We used the Pearson correlation coefficient to test the cor-

relation between two variables X and Y in order to identify

the CPU-level techniques and their relation with perfor-

mance and energy. This coefficient has values between

�1 and þ1, where þ1 means a perfect positive linear cor-

relation, 0 is no linear correlation, and �1 a total negative

linear correlation. In addition, we added a significance test

of the correlation with confidence interval of 95%.

Figure 5 shows a correlation graph for the best perfor-

mance cases on the three benchmarks. We employ the fol-

lowing numerical values for each CPU-level optimization:

Turbo Boost on (þ1) and off (�1), C-States all enabled

(þ1) and all disabled (�1), and CPUFreq governor perfor-

mance (þ1) and powersave (�1).

It seems that Turbo Boost parameter had direct impact

on performance and energy with an almost perfect correla-

tion on Cholesky and QR. An exception was LU with a

lower correlation of 0.31 on performance. In all cases, the

negative correlation between Turbo Boost and RAPL

DRAM means that it reduced DRAM energy when enabled

while increased PKG consumption.

The correlation results also show that CPUFreq gover-

nors and C-States had no relation with performance and

energy. It appears that CPUFreq governor parameter was

not relevant in our comparison of performance and energy
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Figure 4. Processor temperature of each socket with Cholesky and libKOMP runtime. We compared the impact of CPUFreq
governor and Turbo Boost. C-States were disabled.
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in Table 2. On the other hand, C-States had a correlation of

0.33 with RAPL DRAM over LU, that is, increasing

DRAM energy consumption with all C-States enabled. It

explains the best energy case of LU with C-States disabled

in Table 2.

5.3. Focus on LU factorization

Figure 6 shows performance results for LU factorization

with different matrix sizes. We used as reference the GCC

libGOMP runtime to compute the difference over the other

four runtime systems and the OpenMP-based PLASMA,

represented on the bar plots by a percentage value. The

LU algorithm with CW showed significant improvement

compared to other runtime systems (up to 165.1% over

libGOMP), followed by PLASMA LU algorithm.

Thanks to the CW mode, the LU algorithm with lib-

KOMPþCW runtime had more parallelism than other run-

time systems due to the CW algorithm extension based on

KASTORS (Virouleau et al., 2014). Figure 7 illustrates a

Gantt execution from the LU factorization using PLASMA,

libKOMP, and libKOMP with CW.

On the LU factorization, even if the CW version gener-

ates more parallelism, the algorithm has poor efficiency

and threads are frequently idle. The Gantt diagram on all

the 48 cores illustrates long periods of inactivity. libGOMP

is the only runtime where threads lock common dequeue to

get task. Linux will put these lightweight process idle. If we

do not consider libKOMPþCW’s algorithmic variant, then

PLASMA algorithm with libGOMP is the best runtime in

terms of energy consumption for LU factorization. This is

not true for runtime systems based on task scheduling by

work stealing such as libKOMP, libOMP, or XKaapi which

have very active threads that consume energy.

6. Discussion

Majority of the best configurations from Figures 2 and 3,

which are summarized in Table 2, were runtime systems

using work-stealing–based scheduling. On fine grain prob-

lems, libKOMP and XKaapi were generally better. These

results can be explained by the smaller task creation over-

head on XKaapi and libKOMP than others.

The difference between libOMP and libKOMP is the

new features we add into the original Intel libOMP runtime:

the lightweight work stealing algorithm from Cilk and the

request combining protocol from XKaapi. These features

not only impact performance but also impact the way tasks

are scheduled: It suppresses the bounded dequeue limita-

tion that may degenerate task creation into task serializa-

tion. It means that at runtime a thread may be forced to

execute immediately tasks for which no or less affinity

exist. Without bounded size dequeue, a thread that com-

pletes a task will always activate one of the successors

following a data flow relationship producer–consumer,

thus sharing a data resident into cache or the thread

becomes idle and tries to steal tasks. We will investigate

by more finer experiments the exact impact of these addi-

tions in libKOMP.

On LU factorization where algorithmic variant lib-

KOMPþCW was the best, it was followed by XKaapi and

libKOMP on performance. LU factorization is a relevant

code with inactivity sections from the dependencies

imposed by the algorithm, mainly due to a search of pivot

and swap of elements. This optimized algorithm allowed to

increase performance while energy is decreased due to lib-

KOMPþCW runtime and CW OpenMP extension (Virou-

leau et al., 2014). Nevertheless, the platform characteristic,

and especially its memory network, had also an impact on

both performance and energy consumption.

Without these algorithm variants, LU factorization code

consumes less energy using GCC libGOMP runtime. In

libGOMP, the synchronization between threads on the

shared task dequeue resource wastes less cycles. A work-

stealing–based runtime may have interest to incorporate

part of Ribic and Liu (2014), which is used to lower the

speed of threads that are not in the critical path with a

warranty on performance. One of the biggest challenges

is the design of adaptive OpenMP runtime capable to sav-

ing energy on short delays of inactivity.

Our findings on CPU-level optimizations lead us to

believe that the three CPU-level optimizations impact per-

formance and energy of OpenMP runtime systems. The two

processors parameters, Turbo Boost and C-States, had sig-

nificant influence over experimental results. The former

increased performance significantly at energy cost, while

the latter reduced energy at idle states. The impact of

C-States over work-stealing–based runtime systems was

not clear because our correlation test (Figure 5) showed

no relation between C-States and the experimental results.

Nevertheless, we acknowledge that runtime systems based

on work stealing may take advantage of steal phases at the

beginning and the end of the computation to enter in idle

state and reduce energy consumption (Tchiboukdjian et al.,

2013).

CPUFreq governors had more impact at experimental

cases with Turbo Boost disabled. Our experimental results

suggest that tuning all three CPU-level optimizations to
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target performance, mostly DVFS governor and Turbo

Boost, degraded performance due to CPU thermal limita-

tions. Still, the powersave governor was able to sustain

performance while consuming less energy. Other works

show experimental results on techniques using DVFS, as

discussed in Section 2.

7. Conclusion

In this article, experiments with five production-based

OpenMP runtime systems and three CPU-level optimiza-

tions (Turbo Boost, C-States, and Linux CPUFreq gover-

nors) on the three main kernels in dense linear algebra were

conducted on an NUMA platform. We showed that

OpenMP runtime is a new leverage for controlling energy,

and Turbo Boost, as well as C-States, impacted signifi-

cantly performance and energy. Our experimental results

suggest that small algorithmic and runtime improvements

may allow performance gains up to 63% and thus reducing

the energy by 29% over LU factorization from PLASMA

using GCC libGOMP runtime. Runtime systems based on

work stealing were more efficient in performance;

although, it was not clear the impact of C-States at idle

phases in order to reduce energy consumption.

Future works include an extension of our experimental

comparison over a wide range of architectures, including

Intel KNL many-core; experiments using other numerical

benchmarks such as the NAS benchmark (Griebler et al.,

2018); and finer control of architectural features through

high-level tools such as libmsr7 and Mammut (De Sensi

et al., 2017). In addition, we will evaluate the impact on

performance and energy of idle states at steal phases of

work stealing scheduler.
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2. http://gitlab.inria.fr/openmp/clang

3. Mercurial hash from https://bitbucket.org/icl/plasma

4. Git repository: https://gitlab.inria.fr/openmp/libkomp
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