
Journal of Parallel and Distributed Computing 152 (2021) 11–20

a

b

a
t
r
o
d
s
d
d
e
a

l
v
o
a
s

h
0

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Collaborative execution of fluid flow simulation using non-uniform
decomposition on heterogeneous architectures
Gabriel Freytag a,∗, Matheus S. Serpa a, João V.F. Lima b, Paolo Rech a, Philippe O.A. Navaux a

Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
Federal University of Santa Maria (UFSM), Santa Maria, Brazil

a r t i c l e i n f o

Article history:
Received 3 July 2020
Accepted 2 February 2021
Available online 15 February 2021

Keywords:
System-on-Chip
FPGA
GPU
Non-uniform partitioning
Lattice Boltzmann Method

a b s t r a c t

The demand for computing power, along with the diversity of computational problems, culminated
in a variety of heterogeneous architectures. Among them, hybrid architectures combine different
specialized hardware into a single chip, comprising a System-on-Chip (SoC). Since these architectures
usually have limited resources, efficiently splitting data and tasks between the different hardware is
primal to improve performance. In this context, we explore the non-uniform decomposition of the data
domain to improve fluid flow simulation performance on heterogeneous architectures. We evaluate
two hybrid architectures: one comprised of a general-purpose x86 CPU and a graphics processing unit
(GPU) integrated into a single chip (AMD Kaveri SoC), and another comprised by a general-purpose
ARM CPU and a Field Programmable Gate Array (FPGA) integrated into the same chip (Intel Arria 10
SoC). We investigate the effects on performance and energy efficiency of data decomposition on each
platform’s devices on a collaborative execution. Our case study is the well-known Lattice Boltzmann
Method (LBM), where we apply the technique and analyze the performance and energy efficiency
of five kernels on both devices on each platform. Our experimental results show that non-uniform
partitioning improves the performance of LBM kernels by up to 11.40% and 15.15% on AMD Kaveri
and Intel Arria 10, respectively. While AMD’s Kaveri platform’s performance efficiency is of up to
10.809 MLUPS with an energy efficiency of 142.881 MLUPKJ, Intel’s Arria 10 platform’s is of up to 1.12
MLUPS and 82.272 MLUPKJ.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The computational power currently available in high-perform-
nce computing (HPC) systems makes it possible to perform ex-
remely complex tasks within hours, minutes, seconds, or even in
eal-time. Such computing power comes from the heterogeneity
f interconnected devices built over a variety of architectures that
eliver distinct levels of parallelism and computational power
uch as CPU, GPU, and FPGA devices [16,32]. To meet the growing
emand for computing power, not only does the number of
evices in these systems increase, but the devices themselves
volve and become even more powerful, consuming an increasing
mount of energy.
However, some specialized architectures consume significantly

ess energy compared to conventional CPU and GPU ones. De-
ices built on ARM or FPGA architectures typically consume
rders of magnitude less energy than devices with CPU or GPU
rchitecture, respectively [24]. Nevertheless, reduced energy con-
umption implies in lower computational power.

∗ Corresponding author.
E-mail address: gfreytag@inf.ufrgs.br (G. Freytag).
ttps://doi.org/10.1016/j.jpdc.2021.02.006
743-7315/© 2021 Elsevier Inc. All rights reserved.
Although heterogeneity of devices in HPC systems is no longer
a novelty, some heterogeneous devices have emerged integrating
multiple architectures into a single chip such as System-on-Chip
(SoC). Through replacing external connections between different
devices (usually PCIe connections) by significantly shorter and
faster internal connections, it becomes feasible to share the same
resources like memory space and, consequently, eliminate highly
time-costly data transfers between different memory spaces.
Moreover, by placing two architectures into a single chip, both
architectures’ computational power are limited, reducing the
architecture’s overall energy consumption [20,23].

Some examples of currently available heterogeneous architec-
tures are: AMD Kaveri SoC [3] that integrates x86-64 CPU and
Radeon R7 GPU processing units in the same chip; Intel Arria
10 SoC [1] that integrates ARM CPUs and an FPGA; and Xilinx
Zynq SoC [7] that integrates ARM CPUs and an FPGA on the same
chip. Although they are architectures with lower computational
power, it is necessary to distribute the workload and to compute
collaboratively in order to exploit the full potential of hetero-
geneous devices. However, one of the main challenges is the
optimal workload distribution since they typically have different

computing capabilities.

https://doi.org/10.1016/j.jpdc.2021.02.006
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.02.006&domain=pdf
mailto:gfreytag@inf.ufrgs.br
https://doi.org/10.1016/j.jpdc.2021.02.006


G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20

i
C
p
t
c
h
a

l
e
t
C
a
e

S
o
L
g
S
p

2

t
p
a
K
K
r
b
d
s
F
R
t
m
I
L
t
a
i

s
s
s
A
b
d
I
a
d

This article investigates performance and energy consumption
mpact of collaborative execution on two SoC devices based on
PU+GPU and CPU+FPGA architectures using non-uniform data
artitioning. Our case of study is the five distinct kernels from
he Lattice Boltzmann Method (LBM) to evaluate individually and
ollaborative execution performance and energy consumption of
eterogeneous architectures. The main contributions of this paper
re:

• We evaluated performance and energy consumption of two
heterogeneous architectures: AMD Kaveri SoC and Intel Ar-
ria 10 SoC;

• We analyzed the performance and energy consumption of
each device present in both architectures individually and
in a collaborative way;

• We showed that non-uniform partitioning on collaborative
execution improves performance with low impact in energy
consumption of LBM kernels;

• We present an OpenMP + OpenCL D3Q19 Lattice Boltzmann
implementation for heterogeneous architectures.

This article is an extension of our previous work [11], pub-
ished in the SBAC-PAD 2019 conference. It comprises an energy
fficiency analysis of the non-uniform data domain decomposi-
ion approach of both two CPU + GPU and CPU + FPGA System-on-
hip heterogeneous architectures. We increased the related work
nd discussed the trade-off between performance and energy
fficiency.
The remainder of this paper is organized as follows.

ection 2 discusses related work. Section 3 presents the method-
logy and Section 4 describes the parallel implementation of
attice-Boltzmann Method (LBM) for two low-power hetero-
eneous platforms. Our experimental results are presented in
ection 5. Section 6 presents the discussion, and finally Section 7
resents conclusions and future work.

. Related work

Many of the related works used GPUs or FPGAs as an offload
arget to accelerate applications. The authors in [15] evaluated
erformance and power consumption of kernel computations on
n Arria 10 FPGA over an Intel Xeon Phi KNL and an NVIDIA Tesla
80. In [9] the authors evaluate the reliability behavior of AMD
averi aiming to find which configuration provides the lowest er-
or rate or allows the computation of the highest amount of data
efore experiencing a failure. In [2,25,34] the authors accelerated
eep learning networks using OpenCL and FPGAs. In [17] they de-
igned computational intensive kernels of a tsunami simulator on
PGAs and GPUs using OpenCL. The authors in [19] evaluated the
odinia benchmark over GPUs and FPGAs with OpenCL. In [36,37]
hey combined spatial and temporal blocking to evaluate perfor-
ance and power efficiency of stencil computations on FPGAs.

n [28] they optimized geophysics models on GPUs. Regarding
BM kernels, the authors in [18] optimized for GPUs and in [26]
hey studied optimization strategies for accelerators such as GPUs
nd Intel Xeon Phi KNL. In [12] a memory-aware 2D LBM was
mplemented for Intel Xeon manycore processors.

Collaborative processing on heterogeneous devices has been
tudied by several authors. Hetero-Mark [31] is a benchmark
uite for collaborative processing for CPU–GPU architectures with
upport to OpenCL. They analyzed experimental results on an
MD A10-7850K APU. Chai [13] is also a collaborative processing
enchmark suite for integrated devices. It compared task and
ata partitioning strategies and has support to FPGAs and GPUs.
n [14], they evaluated two FPGA systems with Chai benchmark
nd analyzed the task and data partitioning. The authors in [21]
esigned binarised neural networks to take advantage of FPGA
12
systems, and compared performance and energy consumption
over an NVIDIA Titan X GPU. In [22] they optimized a Binarized
Neural Network and evaluated its performance in an Intel Xeon
E5-2699v3 CPU, an NVIDIA GTX Titan X GPU, an Intel Stratix V
and an Intel Arria 10 FPGA and a custom ASIC platform without
using OpenCL architecture. The performance analysis of collabo-
rative computing in two heterogeneous integrated systems using
OpenCL was presented by [5]. They evaluated an AMD A10-7850K
platform with CPU cores and GPU computing units integrated into
the same chip and an E3-1240 v3 CPU chip connected through
PCIe to an Intel Stratix V GX FPGA on a Terasic DE5-Net board.
The results showed that in both platforms, the use of the two
available devices in a collaborative way led to better performance
compared to use CPU only or GPU/FPGA only.

Moreover, some works investigate collaborative execution has
a way to increase the energy efficiency of low energy archi-
tectures. In [35] the authors investigated energy conservation’s
problem for executing mobile applications by task offloading to
the cloud. By collaboratively executing tasks on both mobile’s
hardware and in the cloud, it was possible to reduce the en-
ergy consumption on a mobile device significantly. In [33], they
present an energy-optimal scheduling policy for collaborative
execution in mobile cloud computing network. The experiment
results show that the method can improve energy savings and ex-
tend mobile clients’ battery lifetime. In [29], the authors proposed
a run-time management approach that performs energy-efficient
mapping and thread-partitioning between CPU and GPU devices
on heterogeneous mobile SoCs. The experimental results show
energy savings by the proposed adaptive approach over existing
approaches.

Most of the works previously presented evaluate the perfor-
mance of the different processing units individually. However,
the use of these devices in collaborative processing can lead
to significant performance improvements, as previously demon-
strated by Chang [5]. Moreover, collaborative execution can also
improve the energy efficiency of algorithms on low power archi-
tectures. In our work, we investigate the advantages of collab-
orative execution concerning performance efficiency employing
non-uniform data domain decomposition. We also investigate the
impacts of collaborative execution on energy-efficiency, despite
not attempting to optimize energy consumption.

3. Methodology

This Section details the heterogeneous platforms, the method-
ology used in our experiments, and the Lattice Boltzmann
Method.

3.1. Platforms and experimental design

We used the following two platforms. The first platform, called
A10-7870K, is an AMD architecture that consists of 4 x86-64 CPU
cores and 8 Radeon R7 GPU computing units integrated into the
same chip. It has 6 GB of RAM, a Thermal Design Power (TDP)
of 95 Watts, Ubuntu 14.04 (trusty) operating system, OpenCL
Software Development Kit (SDK) version AMD APP SDK-3.0 and
Clang C/C++ compiler version 7.0. The second platform, called
A10SoCFPGA, is an Intel architecture that consists of 2 ARM
Cortex-A9 CPU cores and an FPGA with 660,000 logic blocks inte-
grated into a single chip. It has 1GB of RAM, a TDP of 30 Watts for
the overall development kit, Angstrom 2014.10 operating system,
Intel FPGA Runtime Environment (RTE) for OpenCL version 18.1,
and ARM GCC C/C++ compiler version 4.7. From now, we will call
the platforms AMD Kaveri and Intel Arria 10. Table 1 summarizes
the environments.



G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20

g
t
w
S
t
1
O
i

1
s
t
e
c
n
W
g
f
f
t
r

M
c
f

d
2
o
o

s
t
t
w
e
i

d
u
d
e
o
a
c
e
d
m

Table 1
Configuration of evaluated platforms.
Platform Parameter Value

AMD Kaveri
CPU AMD A10-7870K, 4 cores
GPU AMD Radeon R7, 8 cores
Memory 6GB DDR3-2133
TDP 95 Watts

Intel Arria 10
CPU ARM Cortex-A9, 2 cores
FPGA 660 000 logic blocks
Memory 1GB
TDP 30 Watts

Both architectures support the OpenMP [4] and OpenCL lan-
uages [30]. However, only AMD Kaveri supports OpenCL on its
wo devices. In Arria 10, only the FPGA supports OpenCL code,
hich is automatically converted into a binary using a High-Level
ynthesis (HLS) compiler so that the FPGA can be programmed by
he host (CPU) through the OpenCL language. Thus, in both Arria
0 and AMD Kaveri, we evaluate the method’s performance in an
penMP + OpenCL implementation (OpenMP in CPU and OpenCL
n GPU/FPGA). The optimization flag used in both was -O3.

We performed experiments in both AMD Kaveri and Intel Arria
0 platforms, decomposing the method’s data domain into two
ubdomains, one for each device. The proportion of data assigned
o each device varied from 0 to 96. 0 means that the kernel is
xecuted individually in one device (CPU, GPU, or FPGA). For the
ollaborative execution, we decomposed the domain in the z-axis
on-uniformly using an inverse proportion for each subdomain.
hile CPU’s subdomain proportion starts with a size of 16 and

oes up to 80 increasing by 16, GPU’s proportion decreases by 16
rom 80 up to 16. For example, a subdomain of size 96 × 96 × 64
or the CPU and of size 96 × 96 × 32 for the FPGA corresponds
o 66.7 and 33.3% of the original domain of size 96 × 96 × 96,
espectively.

In order to measure the method’s performance in means of
illion Lattice Updates Per Second (MLUPS), and energy effi-
iency in Million Lattice Updates Per KiloJoule (MLUPKJ), the
ollowing equation was used:

Sx × Sy × Sz × Nts

106 × U
(1)

where Sx, Sy, and Sz stand for the domain size in x, y and z
imensions, Nts is the number of time steps (which was equal to
00 in all our experiments), and U is the running time in seconds
r the total energy consumption of the experiment for the MLUPS
r MLUPKJ metric, respectively.
We measured the algorithm’s running time and energy con-

umption on both platforms, using different workload propor-
ions for each of its devices. For the performance, we measured
he running time of all five kernels on each device individually, as
ell as the overall running time of the execution. Moreover, each
xperiment was executed at least ten times, with a confidence
nterval of 95% calculated with the Student’s t-distribution.

To record the algorithm’s energy consumption, we used two
ifferent tools on each platform: on AMD’s Kaveri platform, we
sed CodeXL, and on Intel’s Arria 10, we used LTPowerPlay and
evelopment kit’s DC1613 A Linear Dongle. We measured the
nergy consumption using the tool’s default frequency, which
n AMD’s platform was 100 ms, and on Intel’s platform, it was
pproximately 500 microseconds. Therefore, the average power
onsumption values presented in this work for both devices on
ach platform is equal to the device’s total power consumed
uring the entire experiment divided by the respective tool’s

easurement frequency. Moreover, each device’s total energy is

13
Fig. 1. D3Q19 lattice geometry.

equal to the device’s total running time multiplied by its aver-
age power consumption. In this way, we get an average energy
consumption of each device on both platforms disregarding idle
times, once the devices’ running times on different workload
proportions can be disparate.

3.2. Lattice-Boltzmann method

The Lattice Boltzmann Method (LBM) is a numerical method
for fluid flow simulations, and fluid physics modeling origi-
nated from discrete particle kinetics called Lattice Gas Automaton
(LGA). The Lattice Gas Automaton is constructed as a simplified,
fictitious molecular dynamic in which space, time, and particle
velocities are all discrete [6]. Thus, in LBM space, time and
velocity are also discrete.

Lattice-Boltzmann Method is often adopted as an alternative
technique for computational simulations of Fluid Dynamics in-
stead of conventional numerical schemes based on discretizations
of macroscopic continuum equations as discrete Navier–Stokes
equation solvers [6]. In LBM, a lattice is formed by discrete points,
each with a fixed number of discrete displacement directions
on which particles perform spatial displacements at each itera-
tion, enabling simple simulations of physical properties of fluid
flows [12].

In this paper, we used a three-dimensional lattice structure
with nineteen propagation directions, as shown in Fig. 1 and
defined below [27]:

• A static point at coordinate (0, 0, 0), where the particle has
zero velocity. The value of ωi in this case is 1/3.

• Six nearest directions (−1, 0, 0), (+1, 0, 0), (0, −1, 0),
(0, +1, 0), (0, 0, −1) and (0, 0, +1), with unity velocity and
ωi = 1/18.

• Twelve diagonal line neighbors (1, 1, 0), (−1, 1, 0),
(1, −1, 0), (−1, −1, 0), (1, 0, 1), (−1, 0, 1), (1, 0, −1),
(−1, 0, −1), (0, 1, 1), (0, −1, 1), (0, 1, −1) and (0, −1, −1),
with velocity

√
2 and ωi = 1/36.

To deal with the collisions against the boundaries of the struc-
ture we use a mechanism called Bounce-back which consists
in the inversion of the speed vectors directions each time that
a collision occurs against a static point preventing the forces
leaving, returning them to the fluid [8]. For the experiments, we
use a rectangular obstacle placed in the canal at the first third of
the x-axis, as illustrated in Fig. 2.

4. Collaborative LBM implementation

In this Section, we describe the collaborative implementation
of the Lattice-Boltzmann method developed for two low-power
heterogeneous platforms: One is four CPU cores and eight GPU
computing units integrated into a single chip, named AMD Kaveri;
and two CPU cores and an FPGA with 660,000 logic blocks in-
tegrated in the same chip, named Intel Arria 10. In order to



G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20

u
a
i
p
f
o
t
s

w
B
H
m
w
O
t
t
P
C
m
A

4

t
w
t
c
m
l
t
n
T
a
c

p
a
o
i
t
p
l
l
c
c
z
o

l

a
w
o
k
t
d
s
u
o

k
e
f
t
B
s
t
f
o
m
t
m
e
t
o
w
t
o

4

w
i
d
m
t
g
c
o
o
t
i
b
p
R

q
s
t
W

Fig. 2. Rectangular obstacle of the experiments.

se both sets of processing units available in each platform in
collaborative way, we decompose the method’s data domain

nto two subdomains. Besides that, to be able to evaluate the
erformance of each kernel of the method on each platform and
ind the domain decomposition that optimizes the performance
f the method, we implement a variable domain decomposition
o enable the assignment of different subdomain sizes for each
et of processing units on each platform.
As both platforms have support for the OpenCL architecture,

e can use the OpenCL language to implement our Lattice-
oltzmann method and use their heterogeneous processing units.
owever, while the AMD Kaveri platform is fully OpenCL capable,
eaning that both CPU and GPU are OpenCL devices and, in this
ay, can run OpenCL code, the Intel Arria 10 is only partially
penCL capable and only the FPGA can run OpenCL code. In
his way, we implement the parallel heterogeneous version of
he Lattice-Boltzmann method using the OpenMP Application
rogramming Interface (API) to run the method’s kernels in the
PU cores of both platforms and the OpenCL language to run the
ethod’s kernels in the GPU and FPGA processing units of the
MD Kaveri and Intel Arria 10 platforms, respectively.

.1. Domain decomposition

To be able to use multiple devices simultaneously to compute
he fluid dynamics of the Lattice-Boltzmann method in parallel,
e divide its domain into subdomains by dividing the original
hree-dimensional domain in the z axis. In this way, each device
an apply the kernels of the method in parallel on each subdo-
ain. However, dividing the domain into multiple subdomains

eads to inconsistencies in macroscopic values of the fluid due
o dependencies on the nineteen propagation directions of the
eighbor’s particles of each particle of the fluid according to Fig. 1.
herefore, we use ghost zones to deal with the inconsistencies
rising from the division of the domain solving the problem
ompletely.
Since each particle of the fluid has nineteen directions of

ropagation of the forces in the model D3Q19, as shown in Fig. 1,
s the fluid flows the forces of eighteen propagation directions
f each particle are propagated through the neighboring particles
n the fluid. With the division of the domain into subdomains,
he existence of this data dependence makes it necessary, for
articles located at the edges of each subdomain, to access data
ocated in neighboring subdomains. However, the access to data
ocated in other subdomains being manipulated by other devices
an lead to concurrency in data access and consequently in in-
onsistencies. Therefore, to deal with these issues, we use ghost
ones to keep a copy of the edges of the neighboring subdomains
f each subdomain.
Beyond the division of the domain into subdomains to paral-

elize the routines of the method, the routines themselves were
 k

14
Fig. 3. LBM implementation with ghost zones.

lso divided into kernels. Each kernel has data dependencies
hich must be obeyed to ensure the consistency of the results
f the method. In this manner, there is an order in which the
ernels need to be executed by each device to simulate the flow of
he fluid in its subdomain correctly. Besides that, when multiple
evices are used collaboratively, the ghost zones of the neighbor
ubdomains of each device need to be updated. This ghost zone
pdates introduce a synchronization point in parallel execution
f the method when using multiple devices.
Therefore, to deal with these issues, we use ghost zones to

eep a copy of the edges of the neighboring subdomains of
ach subdomain. Fig. 3 shows an illustration of the procedures
or updating ghost zones of two subdomains in two devices. In
his work, as in [10], we decompose the domain of the Lattice-
oltzmann method only in one dimension, in this case in dimen-
ion z. Besides that, as we use at most two devices to compute
he method and use a circular strategy to simulate the flow of
luids in the method, meaning that the particles leaving one side
f the domain return on the opposite side in order to preserve the
acroscopic values of the fluid, there are only four ghost zones

hat correspond to the four faces at the z dimension of the subdo-
ains. These four faces are first copied to a temporary buffer by
ach device, and then each device copies the adjacent faces from
he temporary buffers to its local copy of the z dimension faces
f it neighboring subdomain. As can be seen in Fig. 3, the faces
here the domain is divided are crossing copied, and the faces at
he edges of the original domain are copied to the opposite side
f the subdomains.

.2. Lattice-Boltzmann kernels

The Lattice-Boltzmann method routines are composed of five
ell-defined kernels. The first kernel, called Initialize, assigns an

nitial macroscopic value for each of the nineteen propagation
irections of each particle of the fluid in the three-dimensional
odel used in our work. After initializing, the second kernel

o be executed redistributes the forces of some of the propa-
ation directions of each particle of the fluid and, therefore, is
alled redistribute. The third kernel, called Propagate, is in charge
f propagating the forces of the particles according to the flow
f the fluid. After the propagation, the fourth kernel deals with
he collision of the particles in the fluid with the barriers present
n the domain, as described in Section 3.2, and is called Bounce-
ack. The fifth and last kernel relaxes the forces of each of the
ropagation directions of each particle in the fluid, and it is called
elaxation.
These five kernels must always be executed in the same se-

uence as described above. After the initialization of the macro-
copic values in kernel Initialize, the remaining four kernels need
o be executed sequentially t_max times, as shown in Fig. 4.
hen two devices are used, after the execution of the redistribute
ernel, each device copies its edge faces to the temporary buffers



G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20

I
p
o
q
w
q
o
o
G

t
s
k
t
l
t

t

e
t
e
f
i
k

b
i
t

Fig. 4. D3Q19 Lattice Boltzmann Method Algorithm.

Fig. 5. OpenCL kernel code snippet.

and wait for both devices to finish. Then, each device copies the
neighboring subdomain edge faces from the temporary buffers to
its local copies and execute the remaining three kernels, and this
cycle repeats t_max - 1 times.

4.3. OpenMP + OpenCL implementation

In OpenCL language, each of the Lattice-Boltzmann kernels be-
come OpenCL kernels as in Fig. 5. OpenCL kernels are represented
by the keyword __kernel. Function get_global_id(dim) returns the
unique global work-item ID value for dimension identified by dim.
nitially, to be able to execute kernels in the devices of the OpenCL
latform, it is needed to create an OpenCL context using the IDs
f the devices. After, these kernels can be queued in OpenCL
ueues with First In First Out (FIFO) type data structure from
hich they are then delivered for the devices associated with the
ueue by the OpenCL runtime. Each queue can be associated with
ne or more OpenCL devices, and in our OpenCL implementation
f the Lattice-Boltzmann method, we use an OpenCL queue for
PU/FPGA device.
In the CPU, however, as it is not an OpenCL device, we use

he OpenMP API to parallelize the kernels of the method. Fig. 6
hows a code snippet for the OpenMP implementation. As the
ernels go through all particles in the three-dimensional domain,
here are three nested for loops on which we use OpenMP for
oop pragmas to parallelize the kernels in CPU. To achieve bet-
er performance, we collapse the three nested for loops using
15
Fig. 6. OpenMP kernel code snippet.

he OpenMP pragma #pragma omp parallel for collapse(3) on all
kernels.

In this implementation, a kernel is queued in the FPGA device
queue, and then the corresponding kernel is executed in the CPU.
Only after executing this kernel in the CPU, we can queue the next
kernel in FPGA device queue and then execute the corresponding
kernel in the CPU. Thus, after queuing the redistribute kernel and
xecuting the corresponding kernel in the CPU, queues a copy of
he edge faces of the FPGA subdomain and copies its subdomain
dge faces to the temporary buffers. After copied, the CPU waits
or the copy of the FPGA subdomain edge faces and then copies
t from the temporary buffer to its local copy, and the remaining
ernels and kernels are executed. This cycle repeats t_max - 1

times.

5. Experimental results

In this section, we present the performance and energy ef-
ficiency results of our collaborative execution strategy over the
AMD Kaveri and Intel Arria 10 SoC platforms. Our case of study
was the computing kernels of the Lattice-Boltzmann method on
a three-dimensional model with nineteen propagation directions
of forces, namely D3Q19. We performed experiments using CPU
only, GPU/FPGA only, and CPU + GPU/FPGA through a three-
dimensional domain of size 96 × 96 × 96. The memory size of 1
GB of Intel’s Arria 10 platform limited the size of the domain.

5.1. Performance

Table 2 presents the average running time of the five kernels of
the method in the OpenMP + OpenCL version on the AMD Kaveri
platform. The first column is the kernels name. The following
columns are different decomposition sizes of the method domain,
from CPU only to GPU only. The bold cells are the ones that
performed better, and consequently, had the best partitioning
for each kernel. Initialize and Bounceback kernels performed
etter in GPU only execution. Collaborative execution did not
mprove the performance of these kernels because their running
ime was too short. The Redistribute and Propagate kernels
performance improve by 12.09% and 12.15%, respectively. The
Relaxation kernel had a low-performance improvement of 2.39%.
While the total running time of CPU only was 62.19 s, and using
GPU only the total running time was 18.47 s. It means a per-
formance efficiency of just 2.845 MLUPS for CPU only execution
against 9.579 MLUPS for GPU only, as can be seen in Table 4.
However, collaboratively using both CPU and GPU and dividing
the domain into five distinct proportions (GPU only, 16 × 80,
48 × 48, GPU only and 16 × 80), the shortest running time

achieved was 16.37 s using a non-uniform partitioning, giving an



G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20

C
u

e
t

e
p
l
I
a
E
b
l
k
d
t
t
d
t
d
f
t
d
t
a
r
a
t
9
b
t

i

Table 2
Average running time of all kernels on the CPU and GPU devices of the AMD Kaveri platform on each
workload proportion using the OpenMP + OpenCL version with a domain of size 96 × 96 × 96.

Initialize Redistribute Propagate Bounceback Relaxation

CPU Only 0.059 17.588 18.212 1.544 24.785

80 × 16 CPU 0.049 8.469 9.749 0.925 13.659
GPU 0.002 0.796 3.157 0.024 0.772

64 × 32 CPU 0.040 6.342 8.811 0.732 11.104
GPU 0.004 1.616 6.307 0.048 1.518

48 × 48 CPU 0.030 4.827 7.294 0.593 8.603
GPU 0.006 3.153 8.65 0.076 2.279

32 × 64 CPU 0.022 3.766 4.99 0.445 6.895
GPU 0.010 4.012 9.908 0.102 2.884

16 × 80 CPU 0.013 1.987 1.934 0.227 3.549
GPU 0.012 3.989 10.313 0.122 3.105
GPU Only 0.006 4.811 9.846 0.174 3.636
m
F
e
F
a
(

Fig. 7. Average running time of the three most representative kernels on the
PU and GPU devices of the AMD Kaveri platform on each workload proportion
sing the OpenMP + OpenCL version with a domain of size 96 × 96 × 96.

fficiency of 10.809 MLUPS. Thus, the non-uniform partitioning
echnique improves the entire method performance by 11.39%.

Moreover, looking more closely at Fig. 7, where we show
ach kernel’s running times on the seven different workload
roportions, it is possible to observe that each kernel achieves its
owest running time with different domain decomposition sizes.
n this Figure, each solid line represents the CPU running time for
specific kernel. The dashed ones represent GPU running time.
ach color is one of the three most representative kernels. The
est running time for a specific kernel is at the intersection of two
ines for the same kernel. For instance, we have the Relaxation
ernel executed in 3.55 s in the CPU and 3.10 s in the GPU with a
omain decomposition of one subdomain of size 96 × 96 × 16 for
he CPU and another of size 96 × 96 × 80 for the GPU. Comparing
he running time of the Propagate kernel using the same domain
ecomposition size that Relaxation kernel performed better to
he running time of the Propagate kernel using the domain
ecomposition of 96 × 96 × 48 for the CPU and 96 × 96 × 48
or the GPU, which provided the kernel shortest running time,
he running time was 16.12% worst using Relaxation domain
ecomposition size. The same happens with the other kernels. For
he Initialize kernel, it achieved the shortest running time with
GPU only execution. For the Redistribute kernel the shortest

unning time was achieved with subdomains of size 96 × 96 × 16
nd 96 × 96 × 80 for the CPU and GPU, respectively, and for
he Propagate kernel with subdomains of size 96 × 96 × 48 and
6 × 96 × 48 for the CPU and GPU, respectively. For the Bounce-
ack kernel, GPU only execution achieved the shortest running
ime.

Table 3 presents the average running time of the five kernels
n the OpenMP + OpenCL version on the Intel Arria 10 platform.
16
As in Table 2, the first column is the kernel’s name, and the fol-
lowing columns are different decomposition sizes of the method
domain, from CPU only to GPU only. The bold cells are the ones
that perform better, and consequently, had the best partition-
ing for each kernel. Initialize kernel performed better in FPGA
only execution. Thus, collaborative execution did not improve
its performance because the running time is short. Bounceback
was better using a decomposition of 96 × 96 × 16 for the CPU
and 96 × 96 × 80 for the FPGA. It represents a performance
improvement of 19.16%. The best distribution for Redistribute
and Relaxation was 96 × 96 × 16 for the CPU and 96 × 96 × 80
for the FPGA. For these kernels, most of the work is executed
in the FPGA. The number of cores of Intel Arria CPU explains
it, which is only two. The Propagate kernel performance was
improved by 14.29% using a distribution of 96 × 96 × 32 for the
CPU and 96 × 96 × 64 for the FPGA. In this case, the CPU handles
ore data. While CPU only execution running time was 449.99 s,
PGA only running time was 186.24 s. It means a performance
fficiency of just 0.393 MLUPS for CPU only and 0.95 MLUPS for
PGA only execution. However, collaboratively using both CPU
nd FPGA and dividing the domain into five distinct proportions
FPGA only, 16 × 80, 32 × 64, 16 × 80, and 16 × 80), the shortest
running time achieved was 158.02 s, giving a performance effi-
ciency of up to 1.12 MLUPS. In the end, the LBM performance
improves by 15.15%.

Fig. 8 presents the average running time of the three most
representative kernels of the method in the OpenMP + OpenCL
version on the platform Intel Arria 10. The kernels are Redis-
tribute, Propagate, and Relaxation. In axis x, we have seven
different workload proportions from CPU only to FPGA only. The
solid lines represent the CPU running time and the dashed ones,
GPU running time. The colors represent each kernel. The best
running time is at the intersection of two lines for the same
kernel. With a three-dimensional domain of size 96 × 96 × 96,
and using only the CPU device (leftmost in the Figure) the running
time of the kernels were 83.21, 146.68 and 205.07 s and using
only the FPGA device (rightmost in the Figure), the running times
were 29.31, 83.02 and 72.08 s.

Nevertheless, collaboratively using both CPU and FPGA, the
kernel’s performance improves by up to 19.16%. For instance,
Redistribute and Relaxation performance was better with a
distribution of 96 × 96 × 16 for the CPU and 96 × 96 × 80
for the FPGA while the Propagate performance was better with
96 × 96 × 32 for the CPU and 96 × 96 × 64 for the FPGA. In
the same way as for AMD Kaveri, in Intel Arria 10, the shorter
running times of each kernel were not necessarily obtained with
the same domain decomposition.



G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20

t
l
9

w

Table 3
Average running time of the all kernels on the CPU and FPGA devices of the Intel Arria 10 platform on
each workload proportion using the OpenMP + OpenCL version with a domain of size 96 × 96 × 96.

Initialize Redistribute Propagate Bounceback Relaxation

CPU only 0.277 83.207 146.685 14.754 205.069

80 × 16 CPU 0.247 73.151 117.726 12.636 175.321
FPGA 0.025 6.303 19.007 0.379 13.223

64 × 32 CPU 0.209 62.525 93.066 10.385 142.31
FPGA 0.052 13.262 38.473 0.629 27.726

48 × 48 CPU 0.177 47.550 73.195 6.06 107.32
FPGA 0.081 20.329 57.700 0.9 42.587

32 × 64 CPU 0.155 25.767 47.511 2.028 67.172
FPGA 0.110 19.680 71.158 1.222 48.677

16 × 80 CPU 0.140 14.409 22.480 0.954 34.67
FPGA 0.127 24.666 84.810 1.367 60.688
FPGA only 0.139 29.312 83.020 1.691 72.078
k

a
i
a
k
i
t
A
o
3
i

t
e
s
w
c
a

Fig. 8. Average running time of the three most representative kernels on
he CPU and FPGA devices of the Intel Arria 10 platform on each work-
oad proportion using the OpenMP + OpenCL version with a domain of size
6 × 96 × 96.

5.2. Energy efficiency

Alongside with the running time and performance of the LBM
on the AMD Kaveri platform, in Table 4, we also present the
total energy consumption, the average wattage of both CPU and
GPU devices, and the energy efficiency for all seven domain
decompositions. Total energy consumption corresponds to the
sum of CPU and GPU energy consumption relative to the running
time of the method on each device. Moreover, exceptionally in
the case of CPU and GPU only experiments, once GPU and CPU
devices, respectively, were not in use, the average wattages of
these devices correspond to the average wattage of idle time and
are not included in the reported total energy consumption.

If we look at the CPU and GPU only measures in Table 4,
the disparity in energy consumption between these two devices
is evident. As can be seen, while performing all the method’s
computations using only the CPU device (96 × 0) takes 62.188 s
ith an average wattage of 62.786 Watts (W), GPU only (0 × 96)

takes just 18.473 s and has an average wattage of 39.378 W. CPU
only consumes a total of 3.905 kilojoules (kJ) resulting in the
energy efficiency of 45.318 Million Lattice Updates Per KiloJoule
(MLUPKJ). In contrast, GPU only consumes merely 0.727 (kJ) of
total energy and, therefore, has an energy efficiency of more
than 243 MLUPKJ. It corresponds to a reduction of 3.37 times in
running time and 5.37 times in total energy consumption.

By collaboratively executing all kernels using the same de-
composition for each one, it is possible to observe that the total
energy consumption reduces progressively as the GPU workload
proportion increases. For example, while an 80 × 16 decompo-
sition of workload between CPU and GPU consumes about 2.414
17
Fig. 9. CPU, GPU, and total energy consumption on AMD’s Kaveri platform for
each workload proportion using OpenMP + OpenCL implementation and domain
size 96 × 96 × 96.

J of energy, a fifty by fifty decomposition (48 × 48) consumes
1.955 kJ, and a 16 × 80 consumes just 0.93 kJ of energy. It results
in an energy efficiency of 73.313, 90.509, and 190.224 MLUPKJ,
respectively. Since the GPU energy consumption is significantly
lower and has a higher throughput than the CPU, the relative en-
ergy consumption increase of its workload proportion increment
is smaller than the CPU’s energy consumption decrease, as shown
in Fig. 9.

As seen in Section 5.1, by collaboratively performing the
method’s kernels using both CPU and GPU devices and non-
uniformly decomposing the domain, both the running time and
the performance throughput of the method are significantly en-
hanced in comparison to GPU only. By dividing the domain into
five distinct proportions (GPU only, 16 × 80, 48 × 48, GPU only
nd 16 × 80), one for each kernel, respectively, the running time
n comparison to GPU only is improved from 18.47 to 16.37 s,
nd the total energy consumption increased from 0.736 to 1.248
J. It means a reduction of 1.13 times in running time and an
ncrease in total energy consumption of 1.72 times, thus, reducing
he method’s energy efficiency from 243.246 to 141.786 MLUPKJ.
lthough total energy consumption increases compared to GPU
nly, compared to CPU only, it still means a striking reduction of
.8 times in running time and a notable reduction of 3.13 times
n total energy consumption.

Table 5, in its turn, presents the total energy consumption,
he average wattage of both CPU and FPGA devices, and the
nergy efficiency, besides running time and performance, for all
even domain decompositions on Intel’s Arria 10 platform. As
ell as in AMD’s Kavari platform, performing all the method’s
omputations using only the FPGA device consumes the lowest
mount of total energy. While CPU only (96 × 0) takes 449.992 s



G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20
Table 4
Running time, performance, total energy consumption, average wattage of both CPU and GPU devices, and energy efficiency on AMD’s
Kaveri platform for all seven workload proportions using the OpenMP + OpenCL implementation with a domain of size 96×96×96.
Partition Time [s] Perf. [MLUPS] Total energy [kJ] Avg. CPU/GPU power [W] Energy efficiency [MLUPKJ]

96 × 0 62.188 2.845 3.905 62.786/8.66 45.318

80 × 16 32.85 5.387 2.414 70.119/23.19 73.313

64 × 32 27.029 6.547 2.168 70.407/27.929 81.614

48 × 48 22.703 7.794 1.955 69.65/33.058 90.509

32 × 64 21.282 8.315 1.178 31.201/39.913 150.202

16 × 80 18.091 9.781 0.93 29.272/40.166 190.224

0 × 96 18.473 9.579 0.727 11.53/39.378 243.246
Table 5
Running time, performance, total energy consumption, average wattage of both CPU and GPU devices, and energy efficiency on
Intel’s Arria 10 platform for all seven workload proportions using the OpenMP + OpenCL implementation with a domain of size
96 × 96 × 96.
Partition Time [s] Perf. [MLUPS] Total energy [kJ] Avg. CPU/FPGA power [W] Energy efficiency [MLUPKJ]

96 × 0 449.992 0.393 5.402 12.005/6.25 32.755

80 × 16 379.082 0.467 4.774 11.956/6.218 37.062

64 × 32 308.496 0.574 4.219 12.048/6.265 41.943

48 × 48 234.302 0.755 3.602 12.106/6.298 49.121

32 × 64 166.28 1.064 2.58 11.813/6.352 68.594

16 × 80 171.67 1.031 1.943 11.635/6.394 91.074

0 × 96 186.24 0.95 1.193 11.174/6.406 148.326
Fig. 10. CPU, FPGA, and total energy consumption on Intel’s Arria 10 platform for
each workload proportion using OpenMP + OpenCL implementation and domain
size 96 × 96 × 96.

with an average wattage of 12.005 W, FPGA only (0 × 96) takes
just 186.24 s and has an average wattage of 6.406 W. As a result,
CPU only consumes 5.402 kJ and FPGA only consumes 1.193 kJ of
total energy, giving an energy efficiency of 32.755 and 148.326
MLUPKJ, respectively. It corresponds to a reduction of 2.42 times
in running time and 4.53 times in total energy consumption.

By collaboratively performing the computations, although not
reducing the total energy consumption compared to FPGA only, as
more workload moves from CPU to FPGA, the total energy con-
sumption reduces gradually in comparison to CPU only. Taking
decompositions 80 × 16, 48 × 48, and 16 × 80 as examples,
while in the first decomposition a total of 4.774 kJ of energy
is consumed, a fifty by fifty decomposition (the second one)
consumes 3.602 kJ, and the third and last consumes just 1.943
kJ of energy. If we look at the energy efficiency of these decom-
positions, it means an increase from just 37.062 to 49.121, and
up to 91.074 MLUPKJ, respectively. As well as in AMD’s Kaveri
platform, since FPGA has a lower energy consumption and a
higher throughput compared to CPU, more data in FPGA reduces
the total energy consumption, as can be seen in Fig. 10.

Moreover, by dividing the domain into five distinct propor-
tions (GPU only, 16 × 80, 48 × 48, GPU only and 16 × 80), one for
18
each of the five kernels, respectively, the method’s running time
is significantly improved as could be seen in Section 5.1. While
FPGA only takes 186.24 s and consumes a total of 1.193 kJ of
energy, the non-uniform domain decomposition takes 158.018 s,
consuming a total of 2.151 kJ of energy. As a result, running time
reduces 1.18 times, and total energy consumption increases 1.8
times, reducing the energy efficiency of the method goes from
148.326 to 82.272 MLUPKJ. However, compared to CPU only, it
means a significant reduction of 2.85 times in running time and
2.51 times in total energy consumption.

6. Discussion

Our experimental results provide evidence that collaborative
execution using non-uniform partitioning improves heteroge-
neous architectures performance. As a case of study, we show
that LBM performance was improved by 11.39% and 15.15% in
AMD Kaveri and Intel Arria 10, respectively.

Two points were essential in our approach to achieve that
performance improvement. First, collaborative execution in het-
erogeneous architectures is possible due to the tight integration
of the CPUs and the GPUs or FPGAs in these devices. It allows both
devices working concurrently on the same workload, improving
the overall system resources by employing both CPU threads and
GPU or FPGA concurrency, thereby achieving higher performance.
Second, non-uniform data partitioning is essential, which is a
strategy that disjoint devices perform the same task on different
subsets of the data.

From our experimental results, we make two major observa-
tions. First, as expected, it appears that each device is suitable
or specialized for a specific kind of workload. That is, the per-
formance of each computational kernel over a specific device
depends on its workload. If the kernel is memory-bound, per-
formance may be better if more workload is assigned to the
CPU. On the other hand, if the kernel is CPU-bound assigning
more workload to the GPU or FPGA may improve the overall
performance. Second, choosing the optimal partitioning is one
of the main challenges. Partitioning can be static, which a fixed
fraction of workload is assigned to each device before execution,

and dynamic that workload partitioning is defined at runtime.



G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20

L
g
F

Table 6
Performance gain using best non-uniform partitioning for collaborative execution of the all kernels on AMD
Kaveri and Intel arria 10 platforms with a domain of size 96 × 96 × 96.

AMD Kaveri Intel Arria 10

Kernel Partitioning Perf. gain (%) Partitioning Perf. gain (%)

Initialize 0 × 80 0.00 0 × 80 0.00

Redistribute 16 × 80 17.09 16 × 80 15.85

Propagate 48 × 48 12.15 32 × 64 14.29

Bounceback 0 × 80 0.00 16 × 80 19.16

Relaxation 16 × 80 2.39 16 × 80 15.80
Table 6 summarizes the performance improvement of each
BM kernel on both SoC devices. We calculate the performance
ains over the best individually performance which was GPU and
PGA for AMD Kaveri and Intel Arria 10, respectively. The Initial-

ize and Bounceback performed better in GPU only executions.
The Redistribute and Relaxation performed better with a data
partitioning of 16 × 80 in both CPU–GPU and CPU-FPGA. These
kernels are more suitable to GPU and FPGA devices than CPU with
a performance improvement of 17.09% in CPU–GPU and 15.85% in
CPU-FPGA. Propagate kernel, nonetheless, performed better for
48 × 48 and 32 × 64 data partitioning. It means that this kernel
is suitable to both devices, having almost the same performance
is both CPU–GPU and CPU-FPGA.

Finally, according to the energy consumption results in
Tables 4 and 5, GPU and FPGA’s higher throughput and lower
energy consumption are evident. Considering that the GPU is a
significantly more parallel and efficient device than the CPU, it
is already expected that not only is its running time shorter but
also that its total energy consumption is lower, particularly on
highly parallel stencil methods like LBM. Moreover, by collabo-
ratively performing the method’s computations using both CPU
and GPU/FPGA devices, it is presumable that the total energy
consumption increases in comparison to the use of a single
device, as seen in our experiments. However, with an increase of
1.72 and 1.8 times in total energy consumption compared to the
most energy-efficient decomposition (GPU only on AMD’s Kaveri
and FPGA only on Intel’s Arria 10 platforms), it was possible
to increase the overall performance of the method from 9.579
and 0.95 MLUPS to 10.809 and 1.12 MLUPS using a non-uniform
domain decomposition on both platforms, respectively.

7. Conclusion

In this work, we analyzed the performance impact of collabo-
rative execution on two low-power heterogeneous architectures:
an AMD Kaveri SoC with CPU x86-64 and Radeon R7 GPU devices
integrated into a single chip, and an Intel Arria 10 SoC with
ARM CPU devices and an integrated FPGA on a single chip. Our
case of study was the D3Q19 Lattice Boltzmann Method applica-
tion with five distinct kernels. We performed experiments with
individual executions, CPU only, and GPU/FPGA only, and in a col-
laborative way through data decomposition of the data domain.
Our experimental results suggest that collaborative execution
reduces running times and that non-uniform domain decompo-
sition improves the kernel’s performance by 11.40% and 15.15%
with an increase in total energy consumption compared to the
most energy-efficient on of just 1.72 and 1.8 times on AMD Kaveri
and Intel Arria 10, respectively. While AMD’s Kaveri platform
achieved a performance efficiency of up to 10.809 MLUPS and
an energy efficiency of 141.786 MLUPKJ, Intel’s Arria 10 platform
achieved 1.12 MLUPS and 82.272 MLUPKJ.

Future works include the design of experiments using ker-
nels from different applications and the impact of a dynamic
partitioning strategy on heterogeneous architectures.
19
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research received funding from the Petrobras project,
grant n. 2016/00133-9, by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES), Brazil, Finance Code 001
and by the project ‘‘GREEN-CLOUD: Computação em Cloud com
Computação Sustentável’’ (#16/2551-0000 488-9), from FAPERGS,
Brazil, and CNPq, Brazil, program PRONEX 12/2014. The authors
would like to thank Eduardo Roloff and Francis B. Moreira, from
UFRGS, Brazil, for their valuables feedbacks about the paper. We
also thank Claudio Schepke from UNIPAMPA, Brazil, for his Lattice
Boltzmann method figures.

References

[1] A. Akagic, E. Buza, R. Turcinhodzic, H. Haseljic, N. Hiroyuki, H. Amano,
Superpixel accelerator for computer vision applications on arria 10 soc,
in: 2018 IEEE 21st International Symposium on Design and Diagnostics of
Electronic Circuits & Systems, DDECS, IEEE, 2018, pp. 55–60.

[2] U. Aydonat, S. O’Connell, D. Capalija, A.C. Ling, G.R. Chiu, An OpenCL(TM)
deep learning accelerator on arria 10, in: International Symposium on
Field-Programmable Gate Arrays, 2017, pp. 55–64, arXiv:1701.03534.

[3] D. Bouvier, B. Sander, Applying AMD’s Kaveri APU for heterogeneous
computing, in: Hot Chips Symposium, 2014, pp. 1–42.

[4] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, J. McDonald, Parallel
Programming in OpenMP, Morgan kaufmann, 2001.

[5] L.-w. Chang, J. Gómez-Luna, I. El Hajj, S. Huang, D. Chen, W.-m. Hwu,
Collaborative computing for heterogeneous integrated systems, in: Pro-
ceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering - ICPE ’17, 2017, pp. 385–388.

[6] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev.
Fluid Mech. 30 (1) (1998) 329–364, arXiv:arXiv:1409.5645v1.

[7] L.H. Crockett, R.A. Elliot, M.A. Enderwitz, R.W. Stewart, The Zynq Book:
Embedded Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000
All Programmable Soc, Strathclyde Academic Media, 2014.

[8] S. Cui, N. Hong, B. Shi, Z. Chai, Discrete effect on the halfway bounce-back
boundary condition of multiple-relaxation-time Lattice Boltzmann model
for convection-diffusion equations, Phys. Rev. E 93 (4) (2016) 043311.

[9] G.P. Dávila, D. Oliveira, P. Navaux, P. Rech, Identifying the most reliable
collaborative workload distribution in heterogeneous devices, in: 2019
Design, Automation & Test in Europe Conference & Exhibition, DATE, IEEE,
2019, pp. 1325–1330.

[10] G. Freytag, P.O.A. Navaux, J.V.F. Lima, L.H.S. Mello, Schnorr, P. Rech, Non-
uniform domain decomposition for heterogeneous accelerated processing
units, in: International Meeting on High Performance Computing for
Computational Science, VECPAR, vol. 13, 2018.

[11] G. Freytag, M.S. Serpa, J.V.F. Lima, P. Rech, P.O. Navaux, Non-uniform
partitioning for collaborative execution on heterogeneous architectures, in:
2019 31st International Symposium on Computer Architecture and High
Performance Computing, SBAC-PAD, IEEE, 2019, pp. 128–135.

[12] Y. Fu, F. Li, F. Song, L. Zhu, Designing a parallel memory-aware Lattice
Boltzmann algorithm on manycore systems, in: 2018 30th International
Symposium on Computer Architecture and High Performance Comput-
ing, SBAC-PAD, 2018, pp. 97–106, http://dx.doi.org/10.1109/CAHPC.2018.
8645909.

http://refhub.elsevier.com/S0743-7315(21)00027-7/sb1
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb1
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb1
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb1
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb1
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb1
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb1
http://arxiv.org/abs/1701.03534
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb4
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb4
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb4
http://arxiv.org/abs/arXiv:1409.5645v1
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb7
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb8
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb9
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb11
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb11
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb11
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb11
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb11
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb11
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb11
http://dx.doi.org/10.1109/CAHPC.2018.8645909
http://dx.doi.org/10.1109/CAHPC.2018.8645909
http://dx.doi.org/10.1109/CAHPC.2018.8645909


G. Freytag, M.S. Serpa, J.V.F. Lima et al. Journal of Parallel and Distributed Computing 152 (2021) 11–20

D
p
f
F

[13] J. Gómez-Luna, I.E. Hajj, L. Chang, V. García-Floreszx, S.G. de Gonzalo, T.B.
Jablin, A.J. Peña, W. Hwu, Chai: Collaborative heterogeneous applications
for integrated-architectures, in: 2017 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS, 2017, pp. 43–54,
http://dx.doi.org/10.1109/ISPASS.2017.7975269.

[14] S. Huang, L.-W. Chang, I. El Hajj, S. Garcia de Gonzalo, J. Gómez-Luna,
S.R. Chalamalasetti, M. El-Hadedy, D. Milojicic, O. Mutlu, D. Chen, W.-
m. Hwu, Analysis and modeling of collaborative execution strategies
for heterogeneous CPU-FPGA architectures, in: Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering, ICPE ’19,
ACM, New York, NY, USA, 2019, pp. 79–90, http://dx.doi.org/10.1145/
3297663.3310305, http://doi.acm.org/10.1145/3297663.3310305.

[15] Z. Jin, H. Finkel, Power and performance tradeoff of a floating-point inten-
sive Kernel on OpenCL FPGA platform, in: Proceedings - 2018 IEEE 32nd
International Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2018, IEEE, 2018, pp. 716–720.

[16] D.B. Kirk, W.-m. Hwu, Programming Massively Parallel Processors: A
Hands-On Approach, Morgan kaufmann, 2016.

[17] F. Kono, N. Nakasato, K. Hayashi, A. Vazhenin, S.G. Sedukhin, Perfor-
mance evaluation of tsunami simulation using OpenCL on GPU and
FPGA, in: Proceedings - IEEE 11th International Symposium on Embed-
ded Multicore/Many-Core Systems-on-Chip, MCSoC 2017, vol. 2018-Janua,
2018, pp. 106–113.

[18] J. Kraus, M. Pivanti, S.F. Schifano, R. Tripiccione, M. Zanella, Benchmarking
GPUs with a parallel Lattice-Boltzmann code, in: 2013 25th International
Symposium on Computer Architecture and High Performance Computing,
IEEE, 2013, pp. 160–167.

[19] S. Matsuoka, A. Smith, M. Matsuda, H.R. Zohouri, N. Maruyamay, Evaluating
and optimizing OpenCL kernels for high performance computing with
FPGAs, in:, International Conference for High Performance Computing,
Networking, Storage and Analysis, SC, vol. 2016, no. November, 2016,
p. 35.

[20] S. Mittal, J.S. Vetter, A survey of CPU-GPU heterogeneous computing
techniques, ACM Comput. Surv. 47 (4) (2015) 69.

[21] D.J.M. Moss, E. Nurvitadhi, J. Sim, A. Mishra, D. Marr, S. Subhaschandra,
P.H.W. Leong, High performance binary neural networks on the Xeon+FPGA
platform, in: International Conference on Field Programmable Logic and
Applications, FPL, vol. 27, 2017.

[22] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, D. Marr,
Accelerating binarized neural networks: Comparison of FPGA, CPU, GPU,
and ASIC, in: Proceedings of the 2016 International Conference on
Field-Programmable Technology, FPT 2016, no. c, 2017, pp. 77–84.

[23] K. O’brien, I. Pietri, R. Reddy, A. Lastovetsky, R. Sakellariou, A survey of
power and energy predictive models in HPC systems and applications, ACM
Comput. Surv. 50 (3) (2017) 37.

[24] K. O’Neal, P. Brisk, Predictive modeling for CPU, GPU, and FPGA perfor-
mance and power consumption: A survey, in: 2018 IEEE Computer Society
Annual Symposium on VLSI, ISVLSI, IEEE, 2018, pp. 763–768.

[25] K. Ovtcharov, O. Ruwase, J.-y. Kim, J. Fowers, K. Strauss, E.S. Chung, Ac-
celerating deep convolutional neural networks using specialized hardware,
Microsoft Res. (2015) 3–6, arXiv:arXiv:1011.1669v3.

[26] C. Schepke, J.V. Lima, M.S. Serpa, Challenges on porting Lattice Boltzmann
method on accelerators: NVIDIA graphic processing units and intel xeon
phi, in: Analysis and Applications of Lattice Boltzmann Simulations, IGI
Global, 2018, pp. 30–53.

[27] C. Schepke, N. Maillard, P.O.A. Navaux, Parallel Lattice Boltzmann method
with blocked partitioning, Int. J. Parallel Program. 37 (6) (2009) 593–611.

[28] M.S. Serpa, E.H. Cruz, M. Diener, A.M. Krause, P.O. Navaux, J. Panetta,
A. Farrés, C. Rosas, M. Hanzich, Optimization strategies for geophysics
models on manycore systems, Int. J. High Perform. Comput. Appl. (2019)
1094342018824150.

[29] A.K. Singh, K.R. Basireddy, A. Prakash, G.V. Merrett, B.M. Al-Hashimi,
Collaborative adaptation for energy-efficient heterogeneous mobile socs,
IEEE Trans. Comput. 69 (2) (2019) 185–197.

[30] J.E. Stone, D. Gohara, G. Shi, OpenCL: A parallel programming standard for
heterogeneous computing systems, Comput. Sci. Eng. 12 (3) (2010) 66.

[31] Y. Sun, X. Gong, A.K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mccardwell,
A. Villegas, D. Kaeli, Hetero-mark, a benchmark suite for CPU-gpu collab-
orative computing, in: 2016 IEEE International Symposium on Workload
Characterization, IISWC, 2016, pp. 1–10, http://dx.doi.org/10.1109/IISWC.
2016.7581262.

[32] K. Vipin, S.A. Fahmy, FPGA dynamic and partial reconfiguration: A survey of
architectures, methods, and applications, ACM Comput. Surv. 51 (4) (2018)
72.

[33] J. Xie, L. Dan, L. Yin, Z. Sun, Y. Xiao, An energy-optimal scheduling for
collaborative execution in mobile cloud computing, in: 2015 International
Conference and Workshop on Computing and Communication, IEMCON,
IEEE, 2015, pp. 1–6.
20
[34] J. Zhang, J. Li, Improving the performance of OpenCL-based FPGA ac-
celerator for convolutional neural network, in: Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
- FPGA ’17, 2017, pp. 25–34.

[35] W. Zhang, Y. Wen, D.O. Wu, Energy-efficient scheduling policy for collab-
orative execution in mobile cloud computing, in: 2013 Proceedings IEEE
Infocom, IEEE, 2013, pp. 190–194.

[36] H.R. Zohouri, A. Podobas, S. Matsuoka, Combined spatial and tempo-
ral blocking for high-performance stencil computation on FPGAs using
OpenCL, Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (2018) 153–162, arXiv:1802.00438.

[37] H.R. Zohouri, A. Podobas, S. Matsuoka, High-performance high-order stencil
computation on FPGAs using OpenCL, Proceedings - 2018 IEEE 32nd
International Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2018 (2018) 123–130.

Gabriel Freytag graduated in Computer Science at the
Northwest Regional University of the Rio Grande do
Sul State (UNIJUI), Brazil, and received his master’s
degree at the Federal University of Santa Maria (UFSM),
Brazil. Currently, he is a Ph.D. student at the Federal
University of Rio Grande do Sul (UFRGS). Its research
focuses on performance and energy optimizations on
heterogeneous architectures.

Matheus S Serpa graduated in computer science at the
Federal University of Pampa (UNIPAMPA), Brazil, and
received his master’s degree at the Federal University
of Rio Grande do Sul (UFRGS), Brazil, where he is
currently a Ph.D. student. His research focuses on
mitigating the contention on SMT processors execution
units.

João Vicente Ferreira Lima received a joint Ph.D.
degree in computer science by the Federal University
of Rio Grande do Sul (UFRGS), Brazil, and the MSTII
Doctoral School at the Grenoble University, France.
He received a B.Sc. degree in Computer Science in
2007 by the Federal University of Santa Maria (UFSM),
Brazil, and a M.Sc. degree in Computer Science in
2009 by the Federal University of Rio Grande do Sul
(UFRGS), Brazil. He is associate professor at the Federal
University of Santa Maria (UFSM), Brazil, since 2014.
His research interests are high performance computing,

runtime systems for HPC, parallel programming for accelerators, and distributed
computing.

Paolo Rech received his master and Ph.D. from Padova
University, Italy, in 2006 and 2009, respectively. He
was then a Post-Doc at LIRMM in Montpellier, France.
Since 2012 Paolo is an associate professor at UFRGS,
Brazil. He is the 2019 Rosen Scholar Fellow at the
Los Alamos National Laboratory and he is actively
collaborating with major research centers as Jet Propul-
sion Laboratory and Rutherford Appleton Laboratory
and industries as NVIDIA, AMD, and ARM. His main
research interests include the evaluation and mitigation
of radiation-induced effects in large-scale HPC centers

and in autonomous vehicles for automotive applications and space explorations.

Philippe Olivier Alexandre Navaux, Professor Infor-
matics Institute, University UFRGS. Graduated Elec-
tronic Engineering, UFRGS, Brazil, 1970, Master Applied
Physics, UFRGS, Brazil, 1973, Ph.D. Computer Science,
INPG, Grenoble, France, 1979. Professor graduate and
undergraduate courses Computer Architecture and High
Performance Computing. Leader GPPD, Parallel and
Distributed Processing Group. Projects financed by gov-
ernment agencies H2020, Finep, RNP, CNPq, Capes.
International Cooperation with France, Germany, Spain
and USA. Industrial projects with Microsoft, Intel, HP,

ELL. Has oriented near 100 Master and Ph.D. students, has published near 400
apers in journals and conferences. Member SBC, SBPC, ACM, IEEE. Consultant
unding organizations DoE (USA), ANR (FR), FINEP, CNPq, CAPES, FAPERJ, FAPESP,
APERGS, FAPEMIG, and others.

http://dx.doi.org/10.1109/ISPASS.2017.7975269
http://dx.doi.org/10.1145/3297663.3310305
http://dx.doi.org/10.1145/3297663.3310305
http://dx.doi.org/10.1145/3297663.3310305
http://doi.acm.org/10.1145/3297663.3310305
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb15
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb15
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb15
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb15
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb15
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb15
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb15
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb16
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb16
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb16
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb18
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb18
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb18
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb18
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb18
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb18
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb18
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb20
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb20
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb20
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb23
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb23
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb23
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb23
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb23
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb24
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb24
http://arxiv.org/abs/arXiv:1011.1669v3
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb26
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb27
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb28
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb29
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb30
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb30
http://dx.doi.org/10.1109/IISWC.2016.7581262
http://dx.doi.org/10.1109/IISWC.2016.7581262
http://dx.doi.org/10.1109/IISWC.2016.7581262
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb32
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb33
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb33
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb33
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb33
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb33
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb33
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb33
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb35
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb35
http://arxiv.org/abs/1802.00438
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb37
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb37
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb37
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb37
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb37
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb37
http://refhub.elsevier.com/S0743-7315(21)00027-7/sb37

	Collaborative execution of fluid flow simulation using non-uniform decomposition on heterogeneous architectures
	Introduction
	Related work
	Methodology
	Platforms and experimental design
	Lattice-Boltzmann method

	Collaborative LBM implementation
	Domain decomposition
	Lattice-Boltzmann kernels
	OpenMP + OpenCL implementation

	Experimental results
	Performance
	Energy efficiency

	Discussion
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


