
A Dynamic Task-based D3Q19 Lattice-Boltzmann Method for Heterogeneous
Architectures

João V. F. Lima†, Gabriel Freytag∗, Vinicius Garcia Pinto∗, Claudio Schepke‡, Philippe O. A. Navaux∗
∗Universidade Federal do Rio Grande do Sul, Brazil

†Universidade Federal de Santa Maria, Brazil
‡Universidade Federal do Pampa, Campus Alegrete, Brazil

jvlima@inf.ufsm.br, gfreytag@inf.ufsm.br, vgpinto@inf.ufrgs.br,
claudioschepke@unipampa.edu.br, navaux@inf.ufrgs.br

Abstract—Nowadays computing platforms expose a significant
number of heterogeneous processing units such as multicore
processors and accelerators. The task-based programming
model has been a de facto standard model for such archi-
tectures since its model simplifies programming by unfolding
parallelism at runtime based on data-flow dependencies be-
tween tasks. Many studies have proposed parallel strategies
over heterogeneous platforms with accelerators. However, to
the best of our knowledge, no dynamic task-based strategy
of the Lattice-Boltzmann Method (LBM) has been proposed
to exploit CPU+GPU computing nodes. In this paper, we
present a dynamic task-based D3Q19 LBM implementation
using three runtime systems for heterogeneous architectures:
OmpSs, StarPU, and XKaapi. We detail our implementations
and compare performance over two heterogeneous platforms.
Experimental results demonstrate that our task-based ap-
proach attained up to 8.8 of speedup over an OpenMP parallel
loop version.

1. Introduction

Nowadays computing platforms expose a significant
number of heterogeneous processing units such as multicore
processors and accelerators. Large-scale applications from
the industry usually require mixing different parallelization
paradigms to exploit such machines at their full potential.
Designing such parallel applications that support multiple
paradigms in a portable and efficient way is challenging.

Several libraries or languages are designed to improve
programming productivity. A parallel construct, such as
parallel loops from OpenMP, enables to identify potential
concurrent instruction sets, an approach commonly used in
numerical applications. The main drawback of a for each
construct is the addition of strong synchronization points
to enforce the completion of a set of independent tasks,
with the associated memory update, before the execution of
a new task set. This addition of artificial synchronization
points limits the performance of several algorithms as the
classical block matrix factorizations (Cholesky, LU, QR)
where parallelism between tasks across the outer iterations
exists [1].

On the other hand, the task-based model simplifies pro-
gramming by unfolding parallelism based on data-flow de-
pendencies between tasks. Runtime systems with support for
data-flow programming are nowadays de facto standard for
parallel linear algebra libraries on multi-cores [2]. Besides,
they are suitable for heterogeneous architectures since it
considers heterogeneity concerning computing power and
disjoint address spaces [3], [4], [5].

The Lattice-Boltzmann Method (LBM) is an iterative
numerical method to model and simulate fluid dynamics
properties, where space, time and velocity are discrete.
Depending on the number of dimensions and propagation
directions, an LBM problem may demand high memory
and processing power and requires significant computation
power to be simulated in a computationally acceptable
time. Many parallel implementations of LBM over various
HPC systems can be found in literature such as MPI [6],
OpenMP [7], hybrid MPI/OpenMP [8], MPI/CUDA [9],
hybrid MPI/OpenMP/CUDA [10]. Although some imple-
mentations use OpenMP tasks [11], most research is devoted
to OpenMP parallel loop solutions. However, to the best of
our knowledge, no dynamic task-based strategy of LBM has
been proposed to exploit CPU+GPU computing nodes.

In this paper, we present a dynamic task-based D3Q19
LBM implementation for heterogeneous architectures using
three runtime systems: OmpSs, StarPU, and XKaapi. We
detail our implementations and compare performance over
heterogeneous platforms equipped with 2 GPUs. The con-
tributions of this paper are:

• We present a task-based D3Q19 LBM algorithm
with 3D space partitioning for heterogeneous archi-
tectures;

• We evaluated our algorithm on top of three runtime
systems: OmpSs, StarPU, and XKaapi;

• Experimental results demonstrate that a task-
based approach is able to exploit heterogeneous
CPU+GPU platforms efficiently with up to 8.8
speedup over a OpenMP parallel loop version.

The remainder of the paper is organized as follows.
Section 2 presents the related works on LBM and task-based
algorithms. Section 3 gives an overview of the D3Q19 LBM

108

2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)

2377-5750/19/$31.00 ©2019 IEEE
DOI 10.1109/PDP.2019.00023

method. Section 4 describes the runtime systems used in our
experiments. We detail our task-based LBM algorithm in
Section 5. Section 6 presents the experimental hardware and
methodology used. Our experimental results are presented
in Section 7. Finally, Section 8 and Section 9, respectively,
present the discussion and conclude the paper.

2. Related Work

Most research on parallel LBM methods is devoted to
traditional multicore architectures with OpenMP. In [12]
the authors evaluate the performance of a parallel LBM
in a multicore processor. In [13] the authors compare the
performance of the OpenMP LBM implementation against
the performance of an implementation based on a functional
language called SequenceL. The authors in [14] describe the
LBM-IB library for shared-memory architectures and com-
pared the performance of an OpenMP LBM over a Pthreads
based implementation, both cube-based implementations.

Other studies have target parallel LBM on accelerators.
In [15], the authors developed an optimized LBM imple-
mentation for distributed GPUs. In [16] they study two
2D refinement methods, one based on Multi-Domain and
one based on Irregular meshing, and target two strategies,
GPU and CPU+GPU, on each refinement method. In [17]
the authors proposed a hybrid MPI/OpenMP LBM with
2D partitioning and several optimizations over a CPU+MIC
architecture.

Some authors report task-based implementations of
LBM without data dependencies. Ye et al. [18] parallelized
the flow simulation of the Entropic Lattice-Boltzmann
Method (ELBM) for the D3Q19 model in a heterogeneous
CPU+GPU platform with OpenMP and CUDA, designing
a task-level parallelism mechanism based in a task queue.
In [7] the authors implemented a task-level pipeline of
the D2Q9 LBM model using the Intel Threading Building
Blocks (TBB), which outperformed an OpenMP implemen-
tation. Meadows and Ishikawa [11] developed two task-
based implementations from an OpenMP+MPI optimized
implementation of the Lattice Quantum Chromodynamics
(QCD) method. One of the implementations was developed
with OpenMP tasks and the other was developed with hand-
coded tasks. Both task-based implementations outperformed
the original implementation.

Some studies on scientific applications have achieved
performance gains through task-based algorithms with data
dependencies. In [19] the authors present a parallel task-
based application to simulate the propagation of seismic
waves (Ondes3D) with StarPU over heterogeneous architec-
tures. In [20] the study presented a task-based parallelization
of the Fast Multipolar Method (FMM) and showed that the
tasks and dependencies introduced in the last version of the
OpenMP API may allow performance improvement. Finally,
in [21] the authors presented a benchmark for hybrid data
flows and shared memory architectures showing that the
data-flow models based in data dependency graphs provide
greater flexibility than task dependency graphs, which in
turn provide better programmability and performance.

3. Lattice-Boltzmann Method

The Lattice-Boltzmann Method (LBM) is a numerical
method for fluid flow simulations and fluid physics mod-
eling. It is frequently adopted as an alternative technique
for computational simulations of Fluid Dynamics instead of
using discrete Navier-Stokes equations solvers [6] or other
conventional numerical schemes based on discretizations of
macroscopic continuum equations [22].

In the LBM, space, time and velocity of the particles are
considered discrete. A lattice is formed by discrete points,
each one with a fixed number of discrete displacement
directions and at each iteration, particles realize a space
displacement among the lattice points, enabling simulations
of physical properties of fluid flows in a simple way.

In this paper, we consider a three-dimensional lattice
structure with 18 propagation directions, as shown in Fig. 1.
As the propagation can be null, one more propagation
direction is added to the eighteen directions, resulting in
a D3Q19 structure.

Figure 1. D3Q19 lattice geometry.

The possible directions, velocity and ω weight are de-
fined by [6]:

• A static point at coordinate (0, 0, 0), where the par-
ticle has zero velocity. The value of ωi in this case
is 1/3.

• Six nearest directions (−1, 0, 0), (+1, 0, 0),
(0,−1, 0), (0,+1, 0), (0, 0,−1) and (0, 0,+1), with
unity velocity and ωi = 1/18.

• Twelve diagonal line neighbors (1, 1, 0), (−1, 1, 0),
(1,−1, 0), (−1,−1, 0), (1, 0, 1), (−1, 0, 1),
(1, 0,−1), (−1, 0,−1), (0, 1, 1), (0,−1, 1),
(0, 1,−1) and (0,−1,−1), with velocity

√
2 and

ωi = 1/36.

To deal with the collisions against the boundaries, a
mechanism called Bounce-back is used [6]. It consists in
the inversion of the speed vectors directions each time that
a collision occurs against static points in the boundary. This
method prevents the forces leaving, returning them to the
fluid.

4. Task-based Runtime Systems

Task parallelism is considered a well-suited program-
ming model for heterogeneous architectures since paral-
lelism is explicit and detection of synchronizations is im-
plicit due to data dependencies between tasks. A task-based

109

algorithm unfolds a directed acyclic graph (DAG) or a data-
flow graph (DFG) whenever dependencies between tasks
and data are considered [23]. Besides, this model favors fine
granularity and asynchronism that are essential in order to
exploit parallelism, reduce idleness and improve scalability
in modern architectures.

One of the key features in a “heterogeneous-ready”
runtime is task multi-versioning that requires two versions
of the same code: one for CPU and one for GPU. One of
the first papers to mention this concept [24] associates a
signature to tasks that must be respected by all implemen-
tations. This signature includes task parameters and their
access modes (read or write). Therefore, there is a clear
separation between a task definition and its architecture
specific implementations.

Besides, another fundamental feature is memory man-
agement of disjoint address spaces offering an abstraction
layer similar to a distributed shared memory (DSM). A
runtime system needs to manage memory transfers based
on data dependencies between tasks. For instance, a GPU
task would require memory allocation and data transfer
to the GPU memory for each parameter before execution.
Throughout execution, it may require a transfer from GPU
memory to main memory if the result of this task is read
by another one.

Programming interfaces such as OmpSs, StarPU, and
XKaapi, described below, enable executions on multi-CPU
and multi-GPU systems simultaneously.

4.1. OmpSs

OmpSs [5] is a programming model to exploit task-
level parallelism by OpenMP-like pragmas and a runtime
system to schedule tasks while preserving dependencies.
OmpSs does not rely on a library API to write a program
and the user depends on the Mercurium compiler. The
OmpSs runtime, called Nano++, offers different scheduling
strategies, and most results are reported on a centralized
scheduling strategy with data locality on multi-CPU, multi-
GPU, and clusters.

Figure 2 illustrates an example of task multi-versioning
on top of OmpSs. An algorithm may call the method
TaskCompute and the runtime will identify two task ver-
sions of this method by directive target followed by a task
directive with data-flow dependencies on created tasks. The
clause device identifies the task’s target (smp or cuda),
in addition to clause implements that gives an alternative
version for the specified target device.

4.2. StarPU

StarPU is a runtime system providing a data manage-
ment facility and an unified execution model over hetero-
geneous architectures including GPUs and Cell BE pro-
cessors [4]. StarPU programming model relies on explicit
parallelism by tasks with data dependencies and a memory
layer to abstract transfers among disjoint address spaces.
In addition, the StarPU runtime also provides a set of

1 #pragma omp target device (smp) copy_deps
2 #pragma omp task inout([BS]A)
3 void TaskCompute(double c, double* A, int BS)
4 { /* CPU implementation */ }
5

6 #pragma omp target device(cuda) implements(TaskCompute) \
7 copy_deps
8 #pragma omp task inout([BS]A)
9 void TaskComputeCUDA(double c, double* A, int BS)

10 { /* GPU implementation */ }

Figure 2. Example of task multi-versioning with OmpSs annotations.

scheduling policies from dynamic work balance or based
on performance models.

Figure 3 illustrates an example of the StarPU API. The
starpu_codelet structure describes a task with two imple-
mentations compute_cpu_func and compute_cuda_func for
CPU and GPU, respectively, and its data dependencies. This
task is instantiated and submitted inside the method com-
pute. The example makes use of a data handle to register this
memory pointer in StarPU that will manage its coherence
between different address spaces.

1 static void compute_cpu_func(void *descr[], void *arg)
2 { /* CPU implementation */ }
3

4 static void compute_cuda_func(void *descr[], void *arg)
5 { /* GPU implementation */ }
6

7 static starpu_codelet cl = {
8 .where = STARPU_CPU | STARPU_CUDA,
9 .cpu_func = compute_cpu_func,

10 .cuda_func = compute_cuda_func,
11 .nbuffers = 1,
12 .modes = { STARPU_RW }
13 };
14

15 void compute(double* A, int n){
16 starpu_data_handle handle;
17 starpu_vector_data_register(&handle, 0, A, n,
18 sizeof(double));
19

20 struct starpu_task *compute_task= starpu_task_create();
21 scal_task->cl = &cl;
22 scal_task->handles[0] = handle;
23

24 int ret = starpu_task_submit(compute_task);
25 starpu_task_wait_for_all();
26 starpu_data_unregister(handle);
27 }

Figure 3. StarPU program example with multi-versioning.

4.3. XKaapi

The XKaapi task model [25], as in Cilk [26], enables
non-blocking task creation: the caller creates the task and
proceeds with the program execution. The semantic remains
sequential such as XKaapi’s predecessors Athapascan [23]
and KAAPI [25]. XKaapi has several APIs (C, Fortran,
C++) to program heterogeneous parallel architectures. In
this paper, code fragments rely on the C++ API.

An XKaapi program is a sequential code complemented
with annotations or runtime calls to create tasks. Paral-
lelism is explicit, while the detection of synchronizations is

110

implicit: the dependencies between tasks and the memory
transfers are automatically managed by the runtime. A task
is a function call that returns no value except through
its effective parameters. Tasks are created by calling the
template function ka::Spawn.

The extensions to the C++ interface provide a high-level
interface for multi-versioning a task implementation [24].
A task implementation for GPU (respectively CPU) is the
specialization of the class TaskBodyGPU (respectively Task-
BodyCPU). At least one implementation is expected per task
signature (TaskCompute in the example). The code fragment
of Figure 4 illustrates how to program a multi-version task
using the C++ API. The ka::Spawn<TaskCompute> creates
a task of type TaskCompute. The data type range_1d is an
abstraction to view a memory region as a 1D array.

1 struct TaskCompute: public ka::Task<2>::Signature<
2 double, ka::RW<ka::range1d<double> > >{};
3

4 template<>
5 struct TaskBodyCPU<TaskCompute> {
6 void operator()(double c, ka::range1d_rw<double> A)
7 { /* CPU implementation */ }
8 };
9

10 template<>
11 struct TaskBodyGPU<TaskCompute> {
12 void operator()(double c, ka::range1d_rw<double> A)
13 { /* GPU implementation */ }
14 };
15

16 ka::range1d<double> A(pA, 256);
17 ka::Spawn<TaskCompute>()(1.0, A);
18 ka::Sync();

Figure 4. Example of an XKaapi C++ task. It shows a task Signature
with its parameters and access modes, as well as a CPU and GPU
implementation.

XKaapi runtime schedules tasks by work-stealing strat-
egy with extensions for task multi-versioning and concurrent
GPU operations [3]. The main difference between XKaapi
scheduler and other runtime systems is that XKaapi com-
putes data-flow dependencies only when an idle thread
searches for a ready task. The scheduler moves the cost
of computing ready tasks from the work performed by
the victim during task’s creations to the steal operations
performed by thieves.

5. Lattice-Boltzmann Task-based Implementa-
tion

Our implementation is based on the LBM blocked par-
titioning described by [6]. The global lattice is divided
according to the number of partitions defined at execution
time for each 3D axis direction (x, y, and z). A block
has information about velocity, obstacles, and buffers for
neighbor transfers. Each task will operate on a block of
the lattice. Figure 5 shows the task-based algorithm of our
implementation. It has 23 different tasks overall, except for
StarPU implementation with additional exchange tasks for
each neighbor direction.

First, task initialize determines the initial conditions for
all points in the block. Its data-flow arguments are the sub-
lattice in write-only mode and initial density values in read-
only. The main loop of the method follows, which creates
four computational tasks and data exchange tasks at each
time step. Task redistribute has a sub-lattice as read-write
argument and calculates the macroscopic density and speed.
Next, in the propagate task, the physical properties are
redirected to neighbor points.

1: Initialize parameters
2: for Each block Nx ×Ny ×Nz do
3: Create task INITIALIZE conditions
4: end for
5: for Each time step do
6: for Each block Nx ×Ny ×Nz do
7: Create task REDISTRIBUTE

8: Create task PROPAGATE

9: for Each propagation direction do
10: Create task to save border velocities to buffer
11: Create task to update border from neighbor

buffer
12: end for
13: Create task BOUNCEBACK

14: Create task RELAXATION

15: end for
16: end for

Figure 5. The task-based algorithm of the D3Q19 LBM method.

Tasks devoted to data transfers are responsible to per-
form data exchanges between neighbor blocks through sub-
lattice buffers. For each propagate direction, a block gener-
ates two tasks: a task to read border velocities of a specific
direction from the sub-lattice and save to a buffer of its
own block; and a task to update the sub-lattice borders from
neighbor buffers. Figure 6 shows a 3D division of the lattice
by 3× 3× 3 along with the orthogonal buffers.

Figure 6. A 3D lattice division with orthogonal buffers.

111

The last two tasks of the main loop are bounceback
and relaxation. Task bounceback deals with boundary con-
ditions and inverts the speed directions when collissions
occur against static points of the boundary. In the end, task
relaxation emulates the shock among the particles. Both
tasks receive as data-flow argument the sub-lattice of its
block in read-write mode.

Figure 7 illustrates a DAG from OmpSs with two time
steps and 2×2×2 domain division. Tasks for data transfers
were grouped for the sake of simplicity.

User functions:

Taskwait

Initialize

Redistribute

Propagate

Save borders

Update borders

Bounceback

Relaxation

Figure 7. DAG of the task-based LBM algorithm for two timesteps.

6. Tools and Methods

This section details the hardware configuration, the run-
time systems, and methodology used in our experiments.

6.1. Evaluation Platform

We target an experimental platform enhanced with two
GPU accelerators called CHIFFLET.

CHIFFLET is composed of two NUMA nodes with one
Intel Xeon E5-2680 v4 (Broadwell) processor each (total
2 processors) and 14 cores per processors (28 cores total)
running at 2.4 GHz or 3.3 GHz with Turbo Boost, and 768
GB of main memory. It is enhanced with 2 NVIDIA GTX
1080 Ti GPUs (Pascal architecture) of 3,584 CUDA cores
running at 1.58 GHz each (7,168 CUDA cores total) with
12 GB GDDR5X of main memory per GPU. We used as
software environment the GCC compiler 6.3.0 and NVIDIA
CUDA 9.1.

The compilation flags were -O3, -march=native,
-mavx, and -arch=sm_60.

6.2. Software Description

We evaluated the following configurations of each run-
time system:

• OmpSs version 17.12 with two scheduler algorithms:
default breadth-first (bf) that implements a global
ready queue, and work-first (wf) that has a local
ready queue per thread;

• StarPU version 1.2.4 with two scheduling strategies:
the Deque Model Data Aware (DMDA) scheduler
that maps tasks to workers using a history-based per-
formance model, and Work Stealing (WS) scheduler.

• XKaapi version bd0b1bf311 with work stealing
scheduler [3];.

All three runtime systems dedicate one CPU thread to
manage a GPU worker. In the context of our experimental
platform, an execution with all processing units in Chifflet
should have 26 CPU workers and 2 GPU workers.

6.3. Methodology

All executions were composed of two steps: the first
allocates memory for blocks and its sub-lattices and reads
the obstacle file; the second step is the computation. We
report execution time only from the computation step. Each
result is a mean of 30 executions with the same initial condi-
tions and obstacles. The results with StarPU had a warm-up
phase of 1 run, which were not included in the mean values,
to calibrate its history-based performance model. The 99%
confidence interval is represented on the graphs by a vertical
line around the mean values.

All experiments have three-dimensional lattice structures
with a rectangular obstacle placed in the canal at the first
third of the x-axis, as illustrated in Figure 8. In addition,
we fixed the number of time steps at 200 iterations.

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������

y

x

z

X/3X/3

Figure 8. Rectangular obstacle of the experiments.

The number of partitions was chosen according to the
best execution time for values 2, 4, and 8 in all 3D axis.
Lattice sizes from 256× 256× 256 had a partition value of
8 but OmpSs due to a runtime error.

1. Available at: http://kaapi.gforge.inria.fr

112

7. Experimental Results

The goal of our experiments is to evaluate the perfor-
mance of our dynamic task-based LBM algorithm over a
heterogeneous platform enhanced with GPUs. Our objec-
tives are:

• Evaluate performance of our algorithm over a het-
erogeneous platform in terms of execution time;

• Assess the impact of different runtime systems on
a task-based algorithm that demands high memory
footprint and processing power;

• Analyse the performance gain over a CPU-only strat-
egy with OpenMP parallel loops at each computa-
tional phase.

Figure 9 shows performance results of the LBM task-
based algorithm increasing the lattice size and varying the
number of GPUs. The StarPU version attained better per-
formance in all cases, followed by XKaapi and OmpSs.
StarPU scheduler based on Work Stealing outperformed
DMDA by up to 18.91% with size 512× 512× 512 over 2
GPUs. Nonetheless, StarPU had significant standard varia-
tion on both scheduling strategies, impacting the confidence
interval. The maximum standard deviation of StarPU was
24.94% with DMDA scheduler at 448 × 448 × 448 over 2
GPUs.

XKaapi had better results than OmpSs, but did not scale
with the addition of GPUs. OmpSs with work-first scheduler
showed performance results similar to XKaapi on 2 GPUs.
The scheduling strategies of OmpSs had similar results for
CPU-only cases; but work-first attained performance gains
of 20.78% with 1 GPU and 32.11% with 2 GPUs over CPU-
only results of OmpSS using work-first and input size 512×
512 × 512. The breadth-first scheduler of OmpSs did not
perform as expected and did not scale with additional GPUs.
StarPU WS scheduler reduced execution time by up to 4%
with 1 GPU and 29.87% with 2 GPUs over CPU-only results
of StarPU with the same scheduler and input size 512×512×
512.

Figure 10 illustrates speedup results of our task-based
algorithm with 2 GPUs over an OpenMP parallel loop ver-
sion of LBM executed with 28 CPU threads. Our approach
obtained speedup over OpenMP for all input sizes. Speedup
at input size 512 × 512 × 512 over OpenMP was 3.65 by
OmpSs breadth-first, 5.42 by OmpSs work-first, 5.25 by
XKaapi, 7.19 by StarPU DMDA, and 8.87 by StarPU WS.

In order to analyse the impact of scheduling strategies,
Figure 11 illustrates a Gantt diagram obtained from StarPU
comparing both DMDA and WS strategies for 10 iterations
and input size 512×512×512. DMDA had poor efficiency
on CPUs and they were frequently idle, with maximum
occupancy of 62% on a CPU thread. On the other hand,
WS efficiently distributed tasks over CPUs and GPUs with
a CPU occupancy of at least 93%.

8. Discussion

Our experimental results provide evidence that our dy-
namic task-based approach with LBM can efficiently ex-

ploit heterogeneous architectures. The algorithm obtained
speedup over an OpenMP parallel loop version in all cases.

Two runtime features proved to be essential on our im-
plementation of the D3Q19 LBM model: software cache and
scheduling over multiple architectures. First, the software
cache manages disjoint address spaces and is able to evict
memory when GPU memory is full. Second, scheduling
over CPUs and GPUs enables the execution of tasks on
both worker types simultaneously in order to compute a
common problem. The speedup analysis demonstrated that
a CPU+GPU approach was more efficient than a multi-
threaded strategy.

We can note that different scheduling strategies clearly
impact performance although we implemented the same
algorithm. The StarPU WS strategy outperformed its DMDA
history-based performance model due to bad decisions of
DMDA algorithm for large workloads [27] such as the
D3Q19 LBM. XKaapi and OmpSs work-first strategies had
similar results due to the work stealing scheduler that
was able to harness CPU workers efficiently. Despite the
high-level programming model of OmpSs, our experiments
suggest that its scheduling strategy (breadth-first) was not
efficient.

In the context of programming models, OmpSs has an
elegant approach compared to StarPU and XKaapi with
incremental parallelism through a set of compiler directives
and library routines. A naive code analysis using the Lines
of Code Without Comments (NLOC) metric shows that
OmpSs implementation has 2438 NLOC, which is less than
StarPU (3992 NLOC) and XKaapi (3442 NLOC). Still,
these implementations significantly surpass NLOC metrics
of OpenMP (707 NLOC).

9. Conclusion

In this paper, we present a dynamic task-based D3Q19
LBM implementation using three runtime systems for het-
erogeneous architectures: OmpSs, StarPU, and XKaapi. Ex-
perimental results demonstrate that a task-based approach
is able to exploit heterogeneous platforms efficiently. Our
algorithm obtained up to 8.8 speedup over an OpenMP
parallel loop version.

Future works include more experimental evaluations on
performance for large lattice sizes, analysis of energy con-
sumption, and algorithm extensions to distributed platforms.

Acknowledgment

Experimental results presented in this paper were carried
out in part using the Grid’5000 testbed, being developed
under the Inria ALADDIN development action with support
from CNRS, RENATER and several Universities as well as
other organizations (see https://www.grid5000.fr).

References

[1] J. Kurzak, H. Ltaief, J. Dongarra, and R. M. Badia, “Scheduling dense
linear algebra operations on multicore processors,” Concurr. Comput.
: Pract. Exper., vol. 22, pp. 15–44, 2010.

113

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

28 CPU 27 CPU + 1 GPU 26 CPU + 2 GPU

64 128 192 256 320 384 448 512 64 128 192 256 320 384 448 512 64 128 192 256 320 384 448 512

0

500

1000

1500

2000

Lattice size NX x NY x NZ

Ti
m

e
(s

)
Runtime ● OmpSs (bf) OmpSs (wf) StarPU (dmda) StarPU (ws) XKaapi

Figure 9. Execution time of LBM over all CPUs (left), 1 GPU (center) and 2 GPUs (right) on Chifflet.

●●
●●

●
●

●

●

Speedup over OpenMP (28 threads)

64 128 192 256 320 384 448 512

0.0

2.5

5.0

7.5

Lattice size NX x NY x NZ

S
pe

ed
up

Runtime ● OmpSs (bf) OmpSs (wf) StarPU (dmda) StarPU (ws) XKaapi

Figure 10. Speedup results of the task-based LBM algorithm with 26 CPUs
plus 2 GPUs over OpenMP (28 threads).

[2] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class of parallel
tiled linear algebra algorithms for multicore architectures,” Parallel
Comput., vol. 35, no. 1, pp. 38–53, Jan. 2009.

[3] T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin, “Xkaapi: A
runtime system for data-flow task programming on heterogeneous ar-
chitectures,” in 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing, May 2013, pp. 1299–1308.

[4] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experi-
ence, vol. 23, no. 2, pp. 187–198, 2011.

[5] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé,
and J. Labarta, “Productive programming of gpu clusters with ompss,”
in 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, May 2012, pp. 557–568.

[6] C. Schepke, N. Maillard, and P. O. A. Navaux, “Parallel lattice
boltzmann method with blocked partitioning,” International Journal
of Parallel Programming, vol. 37, no. 6, pp. 593–611, 2009.

[7] H. Başağaoğlu, J. R. Harwell, H. Nguyen, and S. Succi, “Enhanced
computational performance of the lattice Boltzmann model for simu-

lating micron- and submicron-size particle flows and non-Newtonian
fluid flows,” Computer Physics Communications, vol. 213, pp. 64–71,
2017.

[8] J. R. Clausen, D. A. Reasor, and C. K. Aidun, “Parallel performance
of a lattice-Boltzmann/finite element cellular blood flow solver on the
IBM Blue Gene/P architecture,” Computer Physics Communications,
vol. 181, no. 6, pp. 1013–1020, 2010.

[9] J. Kraus, M. Pivanti, S. F. Schifano, R. Tripiccione, and M. Zanella,
“Benchmarking GPUs with a parallel Lattice-Boltzmann code,” Pro-
ceedings - Symposium on Computer Architecture and High Perfor-
mance Computing, pp. 160–167, 2013.

[10] C. Feichtinger, J. Habich, H. Köstler, U. Rüde, and T. Aoki, “Per-
formance modeling and analysis of heterogeneous lattice boltzmann
simulations on cpu–gpu clusters,” Parallel Computing, vol. 46, pp. 1
– 13, 2015.

[11] L. Meadows and K.-i. Ishikawa, “OpenMP Tasking and MPI in a
Lattice QCD Benchmark,” in International Workshop on OpenMP.
Springer, 2017, pp. 77–91.

[12] W. Zhou, Y. Yan, X. Liu, and B. Liu, “Lattice boltzmann parallel
simulation of microflow dynamics over structured surfaces,” Advances
in Engineering Software, vol. 107, pp. 51–58, 2017.

[13] H. Başağaoğlu, J. Blount, J. Blount, B. Nelson, S. Succi, P. M.
Westhart, and J. R. Harwell, “Computational performance of Sequen-
ceL coding of the lattice Boltzmann method for multi-particle flow
simulations,” Computer Physics Communications, vol. 213, pp. 92–
99, 2017.

[14] P. Nagar, F. Song, L. Zhu, and L. Lin, “LBM-IB: A parallel library to
solve 3D fluid-structure interaction problems on manycore systems,”
Proceedings of the International Conference on Parallel Processing,
vol. 2015-December, pp. 51–60, 2015.

[15] E. Calore, A. Gabbana, J. Kraus, E. Pellegrini, S. F. Schifano, and
R. Tripiccione, “Massively parallel lattice–boltzmann codes on large
gpu clusters,” Parallel Computing, vol. 58, pp. 1–24, 2016.

[16] P. Valero-Lara and J. Jansson, “Heterogeneous cpu+gpu approaches
for mesh refinement over lattice-boltzmann simulations,” Concur-
rency and Computation: Practice and Experience, 2016.

[17] P. Tang, A. Song, Z. Liu, and W. Zhang, “An Implementation and
Optimization of Lattice Boltzmann Method Based on the Multi-
Node CPU+MIC Heterogeneous Architecture,” 2016 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), no. 1, pp. 315–320, 2016.

114

Figure 11. StarPU gantt chart from LBM using DMDA (top) and Work Stealing (bottom) scheduling with lattice size 512x512x512 and running the first
10 iterations.

[18] Y. Ye, K. Li, Y. Wang, and T. Deng, “Parallel computation of entropic
lattice boltzmann method on hybrid CPU-GPU accelerated system,”
Computers and Fluids, vol. 110, pp. 114–121, 2015.

[19] V. Martínez, D. Michéa, F. Dupros, O. Aumage, S. Thibault,
H. Aochi, and P. O. A. Navaux, “Towards seismic wave modeling
on heterogeneous many-core architectures using task-based runtime
system,” in 2015 27th International Symposium on Computer Archi-
tecture and High Performance Computing (SBAC-PAD), Oct 2015,
pp. 1–8.

[20] E. Agullo, O. Aumage, B. Bramas, O. Coulaud, and S. Pitoiset,
“Bridging the gap between openmp and task-based runtime systems
for the fast multipole method,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 10, pp. 2794–2807, 2017.

[21] V. Gajinov, S. Stipić, I. Erić, O. S. Unsal, E. Ayguadé, and A. Cristal,
“Dash: A benchmark suite for hybrid dataflow and shared memory
programming models: with comparative evaluation of three hybrid
dataflow models,” in Proceedings of the 11th ACM Conference on
Computing Frontiers. ACM, 2014, p. 4.

[22] S. Chen and G. D. Doolen, “Lattice Boltzmann Method for Fluid
Flows,” Annual Review of Fluid Mechanics, vol. 30, no. 1, pp. 329–
364, 1998.

[23] F. Galilée, J.-L. Roch, G. G. H. Cavalheiro, and M. Doreille,
“Athapascan-1: On-line building data flow graph in a parallel lan-
guage,” in Proc. of PACT’98. Washington, DC, USA: IEEE Com-
puter Society, 1998, pp. 88–95.

[24] E. Hermann, B. Raffin, F. c. Faure, T. Gautier, and J. Allard, “Multi-
GPU and Multi-CPU Parallelization for Interactive Physics Simula-
tions,” in Proc. of the 2010 Euro-Par, vol. 6272. Springer, 2010,
pp. 235–246.

[25] T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A thread scheduling
runtime system for data flow computations on cluster of multi-
processors,” in Proc. of PASCO’07. London, Canada: ACM, 2007.

[26] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and
implementation, ser. PLDI ’98. New York, NY, USA: ACM, 1998,
pp. 212–223.

[27] V. G. Pinto, L. Stanisic, A. Legrand, L. M. Schnorr, S. Thibault, and
V. Danjean, “Analyzing dynamic task-based applications on hybrid
platforms: An agile scripting approach,” in 2016 Third Workshop on
Visual Performance Analysis (VPA), Nov 2016, pp. 17–24.

115

