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Abstract—In the last ten years, GPUs have dominated the
market considering the computing/power metric and numerous
research works have provided Basic Linear Algebra Subpro-
grams implementations accelerated on GPUs. Several software
libraries have been developed for exploiting performance of
systems with accelerators, but the real performance may be
far from the platform peak performance. This paper presents
XKBlas that aims to improve performance of BLAS-3 kernels
on multi-GPU systems. At low level, we model computation as a
set of tasks accessing data on different resources. At high level,
the API design favors non-blocking calls as uniform concept to
overlap latency, even by fine grain computation. Unit benchmark
of BLAS-3 kernels showed that XKBlas outperformed most im-
plementations including the overhead of dynamic task’s creation
and scheduling. XKBlas outperformed BLAS implementations
such as cuBLAS-XT, PaRSEC, BLASX and Chameleon/StarPU.

Index Terms—Multi-GPU, BLAS, Task Parallelism.

I. INTRODUCTION

Dense linear algebra and operations on matrices are fun-

damental subprograms in scientific applications and deep

learning. The design of BLAS library [1] makes easy the

development of high performance applications. BLAS makes

possible the cooperation of a good numerical method for solv-

ing accurately a domain specific problem and a highly tuned

library implementation for dense linear algebra operations. For

instance LAPACK relies on BLAS for performance portability.

Several commercial (Intel MKL, AMD ACML, IBM ESSL)

and open source (OpenBlas, ATLAS) implementations propose

highly tuned algorithms. Hence, BLAS ensures performance
portability of linear algebra routines. And, despite if accept-

able criticism about the approach were formulated [2], [3], it

became a standard building block in HPC.

Since the 70’s, when BLAS was defined, its architecture

varies a lot. Memory hierarchies in the 80’s were captured

by the definitions of BLAS level 2 and level 3 with higher

arithmetic intensity. With the apparition of GPU in HPC a

decade ago, GPU has continuously demonstrated its perfor-

mance/energy ratio which makes it unavoidable for extreme

scale computing. Nowadays NVIDIA V100 SMX2 has peak

performance of 7.8 TFlops/s in double precision floating point

number (DP). In comparison the high end 8180 Xeon platinum

Skylake peak DP performance ranges between 1.5 TFlops/s

and 2 TFlops/s depending of the real frequency due to turbo

boost mode. Moreover, memory bandwidth has higher rate on

GPU than CPU which is required for low arithmetic intensity

Fig. 1. Performance DGEMM on 2 V100-PCIe NVidia with several libraries
that provide BLAS routines on LAPACK matrix layout.

applications. Hence, offloading computation to single or multi-

GPUs has been an active research field [2], [4]–[14].

To better exploit all performance capacity, programmers

must deal with challenging problems concerning latency of

communication between host and GPU(s), memory limitation

of GPU and, finally, load balancing in heterogeneous archi-

tectures. Nevertheless, accelerating BLAS on multi-GPUs in

legacy applications imposes a tradeoff between performance

with heavy code refactoring and overhead of drop-in replace-

ment libraries.

Let us illustrate the level of performance of various

multi-GPU libraries providing API with same LAPACK ma-

trix layout as BLAS (or CBLAS) library. Figure 1 reports

the GFlops/s for GEMM matrix-matrix multiplication with

the following libraries: up-to-date version1 of the library

Chameleon [15] on top of StarPU [5], BLASX [14], multi-

core CBLAS from OpenBLAS-0.3.3 and cuBLAS-XT from

CUDA-9.0. The GEMM, pure CPU, has performance of

about 762 GFlops/s (43% of the CPU peak, 5% of the GPU

peak) 2. Chameleon with StarPU reaches at most 2.8 TFlops/s

1Git hash g1f14c6b25.
2DP GEMM. Dual socket server (Chifflot V) is an Intel Gold 6126 has

peak performance between 1.3 TFlops/s and 1.76 TFlops/s with attached 2
NVIDIA V100 PCIe 16GB GPUs at 7TFlops/s DP per GPU.
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(about 20% of GPU peak) due to mandatory conversion from

LAPACK matrix layout to internal tile matrix representation.

The cuBLAS-XT with 9.8 TFlops/s (70% of the peak) is

able to process arbitrary large matrix but with overhead due

to communication and grain size penalties (see section V-B

in [14]). BLASX showed more than 13 TFlops/s (95% of

the peak) and, to the knowledge to the author, was the

fastest library with LAPACK matrix layout representation. It is

possible to call BLASX routines directly in legacy applications

for the small set of routines implemented. XKBlas, presented

in this paper, attained similar performance (95% of the GPU

peak) compared to BLASX but outperforms it on smaller

matrix dimensions.
Obtaining performance on GEMM from a legacy application

with LAPACK matrix layout is easy on large matrices because

GPUs have good occupancy. But (1) it assumes the fact that

memory used for matrices should have been already pinned,

and accounting the pinning time in performance degrades it.

(2) Real applications schedule several BLAS kernels with

dependencies. Except XKBlas, proposed in this paper, all

libraries of Fig. 1 with LAPACK matrix layout have syn-

chronous semantics with strong guarantees about the CPU

memory coherency after the operations. This point is a strong

limiting factor: data on GPU after the end of BLAS routine

may be transferred forth and back if new BLAS is scheduled.

The lack of support to take into account composition of

(BLAS) kernels is a performance penalty.
This paper presents XKBlas, a high-performance BLAS

library to exploit multiple GPUs, based on the XKaapi runtime

system [6], [11], [16]. The main contributions of XKBlas on

multi-GPU BLAS for HPC legacy applications are two simple

and powerful features:

1) Composition of kernels. XKBlas allows to describe a

sequence of any BLAS kernels to be scheduled on

resources. Each BLAS kernel is decomposed into tasks

with data flow dependencies and the runtime manages

dependencies between tasks of different kernels. At

runtime, the data flow graph between computational

tasks is unfold and scheduled thanks to the XKaapi

runtime system.

2) Explicit coherency operation. XKBlas lets the user to ex-

press data transfers explicitly between resources. Mem-

ory of GPUs are viewed as cache, and data transfers are

a meaning of forcing update to the main host memory.

We base our solution on re-using fine grain tasks from

XKaapi that allows to integrate complex operations with

dependencies among other operations as a XKaapi task. Task

management and data flow dependencies have low over-

head [11]. It is one of the reasons that XKBlas outperformed

BLASX and cuBLAS-XT in Fig.1, which do not implement

such dependent task model.
We evaluated XKBlas on two multi-GPU systems over

cuBLAS-XT, PaRSEC and Chameleon/StarPU. XKBlas con-

sistently outperformed them on all systems (4 NVIDIA P100

SMX2, 2 NVIDIA V100 PCIe, and 4 NVIDIA V100 SMX2).

In comparison with NVIDIA cuBLAS-XT, XKBlas demon-

strated better scalability with up to on average 188% perfor-

mance gain and 450% less communication volume during all

experiments.

The remainder of the paper is organized as follows. Sec-

tion II analyzes the background and related works. Section III

reviews the proposed XKBlas library and the XKaapi runtime

system. We detail design and implementations of XKBlas and

the interaction between XKBlas and XKaapi in Section IV.

The experimental results of XKBlas against existing state-of-

art implementations are presented in Section V. Finally, we

conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORKS

A. Multi-GPU BLAS libraries

There are several libraries that provide dense linear al-

gebra algorithms for BLAS an LAPACK routines. Several

works [2], [7], [9], [17] assume matrix representation with

tile data layout. Tile algorithms create tasks that operate on

contiguous memory tile in order to reduce cache penalty and

to increase performance. But this representation comes at the

price of rigidity in further decomposition of tiles that could

not be made without copy or other matrix representation as in

PaRSEC [18]. Furthermore, when porting tile algorithms on

multi-GPU, the communications of sub matrices to GPU make

them contiguous on GPU. In this context, tile representation

on the host is irrelevant.

Several libraries [7], [9], [12], [14], [19] offer LAPACK

subroutines on the (legacy) LAPACK matrix representation.

Few of them are designed to be drop-in replacement (cuBLAS-

XT [19] thanks to the NVBLAS wrapper and BLASX [14]

but public source code only contains general matrix-matrix

multiplication BLAS).

B. Overlapping of communication by computation

The overlap of communication and computation is a com-

mon strategy in order to reduce the impact of communication

latency between CPU and GPU on slow PCIe bus. One strat-

egy is to exploit multiple CUDA streams with asynchronous

communications with pinned memory as in StarPU [5] and

XKaapi [6], [11], then more recently BLASX [14] and PaR-

SEC [18]. StarPU, BLASX and cuBLAS-XT enqueue input

operands and kernel into a same stream and overlapping comes

from the use of several streams.

Another strategy from XKaapi [11] runs each operation type

over a separate stream (host-to-device copy, device-to-host

copy or kernel execution) with multiple streams for kernel

operation in order to let the GPU scheduler execute them

concurrently if possible. PaRSEC [18] has adopted the same

strategy.

C. Multi-GPU software cache

A distributed caching mechanism is well-known approach

in order to hold copies of host data into disjoint address

spaces such as GPUs. Several variations of modified MOSI

protocol have been proposed [5], [11], [14], [18] with impact

on performance not really comparable due to the number of
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Fig. 2. Overview of XKBlas/XKaapi steps.

experimental variables involved (problem size, hardware, GPU

memory size, GPU type and count). The notable protocols

are BLASX that proposes a two-level cache mechanism to

improve locality of data access to favor GPU-to-GPU com-

munication, and XKaapi where the eviction strategy prioritize

eviction of read only data first. We modified XKaapi to better

select the source device involved into a data transfer in order

to favor the closest GPU-to-GPU transfer if possible, and

potentially through a high speed NVLINK interconnect.

III. XKBLAS OVERVIEW

Figure 2 overviews XKBlas steps from a dependency graph

to execution on a multi-GPU system. XKBlas [20] links

together two distinct parts: a set of tiled BLAS-3 linear

algebra algorithms [9], [17], and the XKaapi runtime sys-

tem for scheduling tasks with data dependencies over multi-

GPUs [11]. The tiled version of dense linear algebra code [17]

unrolls a data flow graph with a degree of parallelism that

depends on matrix distributions (upper part of Fig. 2).

Then the scheduling algorithm uses the owner-computes

rule heuristic to map a task on resources (Fig. 2(a)): a task

is mapped to the resource owning its input matrix block. If

no owner exists then the runtime makes a random choice

among resources. Then the XKaapi runtime system distributes

(Fig. 2(b)) the task and data among resources. It controls the

distributed execution of tasks, schedules communication and

tries to overlap latency with kernel execution.

A. Matrix representation and distribution

The BLAS-3 tiled algorithms of XKBlas are based on

PLASMA [17] and Chameleon [9], which rely on tasks and

data dependencies to unfold parallelism. Although both use

tile matrix representation, XKBlas has the standard LAPACK

matrix data layout (with colmajor storage) which allows to

perform dynamic and recursive sub-partitions.

In the column major data layout from LAPACK, the mem-

ory region of a matrix starting at address A is entirely de-

scribed by the tuple (m,n, ld, wordsize), m,n are matrix di-

mensions, ld is the leading dimension and wordsize the size in

byte of an element of matrix. The tuple (m,n, ld, wordsize)
is called the memory view of the matrix. This representation

does not change with decomposition operation: sub matrices

have the same representation.

A matrix A in XKBlas is a pair of (address,memory view)
which can be copied or transferred between GPUs.

Once copied, the memory view of (sub)matrix A is

(m,n,m,wordsize), i.e. the leading dimension always be-

comes the row dimension. We said the matrix has been

compacted to a tile form.

The runtime maintains the preferred master resource of

each matrix or submatrix in order to improve data mapping.

For any matrix block Aij that appears during computation,

preferred_map(Aij) returns the location of the resource

that stores a valid copy of Aij. Initially the returned value

is ANY meaning that any resource is the preferred master

resource. Once a task updating Aij is completed on resource

Rk, the runtime updates the preferred_map for Aij to Rk.

The user may decide to set explicitly the preferred

master resources for each block of a matrix or

by calling xkblas_map_1Dblock_cyclic or

xkblas_map_2Dblock_cyclic functions that only

set the mapping information for all matrix blocks in 1D or 2D

distribution over resources. XKBlas also proposes functions

xkblas_distribute_2Dblock_cyclic_async or

xkblas_distribute_1Dblock_cyclic_async to

update the mapping information and migrate the blocks to the

corresponding resources until the memory resources are full.

The mapping information is used by the scheduler to

implement the owner-computes rule heuristic. Block cyclic

and owner-computes rule are basic scheduling algorithms for

mapping task to GPUs. cuBLAS-XT also relies on them.

B. Tiled algorithms

XKBlas currently implements the following algorithms:

GEMM, SYMM, TRSM, TRMM, SYRK, SYR2K, HEMM,

HERK and HER2K for classical precision: S (single precision

floating point number), D (double precision), C (complex,

single precision) and Z (complex, double precision).

XKBlas algorithms comes with the tile version of corre-

sponding algorithms in Chameleon [9] with the following

modification:

• Tile representation are replaced by sub matrix represen-

tation using LAPACK data layout;

• Instructions to copy back a matrix block to the host

have been suppressed because they introduce extra data

transfer between device and host;

• LAPACK matrix data layout is required by legacy appli-

cations so the tile representation API has been discarded;

• Extended LAPACK API with asynchronous semantics is

the only internal XKBlas API for BLAS.

We extend matrix-matrix multiplication by providing a

XGEMMT BLAS level 3 routine, similar to Intel MKL, that

computes the general matrix product A×B but only updates

the upper or lower triangular part of the result matrix. This

is useful when the result is known to be symmetric, such

as some computations in MUMPS [21] or WSMP [22]. The

algorithm only creates tasks to update the triangular part. On

the diagonal, due to the lack of similar routines, we call

cuBLAS XGEMM.

3

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA MARIA. Downloaded on August 26,2020 at 00:04:23 UTC from IEEE Xplore.  Restrictions apply. 



C. Composition of BLAS routines

Integration of GPU in the sparse linear solver WSMP [22]

goes beyond BLAS acceleration. Authors have proposed in

ACCEL WSMP API to capture some compositions of BLAS

calls during their sparse Cholesky factorisation in order to

provide optimized version, e.g. with DTRSMSYRK which

composes one DTRSM followed by one DSYRK. In [23] this

is the Schur complement update that is subject to optimization

by on composition, aggregation to increase arithmetic intensity

of GEMM and pipeline.

In XKBlas any sequence of BLAS calls could be composed

in order to let the runtime better schedule tasks and manage

communication. Moreover, XKBlas proposes a set of API

methods to force cache invalidation which is coherent with

the rest of the API. We also developed a multi-GPUs GEMMT

that updates triangular part of matrix-matrix product which is

extensively used in numerical solver such as MUMPS [21]

when input problem is symmetric.

IV. XKBLAS INTERNALS

This section describes the implementation details of XKBlas

such as its runtime system XKaapi, API calls for cache

asynchronous execution, and composition of BLAS kernels.

A. Inherited task model and scheduling

XKaapi is a macro data flow runtime that creates, at runtime,

tasks and themselves may spawn child tasks [6], [11]. Each

task must describe the access mode to the memory for each

of its formal parameter (read, write, etc).

XKaapi implements a non-preemptive (work stealing)

scheduler, i.e. once started a task runs to completion. In

order to avoid data hazards, there are constraints on the

modes of access between the formal parameters and the

effective parameters [24]. The “sequential” semantics comes

from Athapascan-1 [24]: a value read by a task is produced

by the last previous task with write access following the

sequential order of execution.

At runtime, XKaapi computes the true dependencies be-

tween tasks and builds a data flow graph that represents the

future of the computation. The runtime is in charge of transfers

of input data (read, read-write access mode) and makes data

allocation before starting tasks. XKaapi manages memory

resources as a distributed shared memory.

In XKaapi each GPU has its own queue of ready tasks. A

thread, bound to a CPU core closed to the GPU it manages,

tries to execute at most w-tasks, where w is the window

size (generally two in XKaapi) of concurrency on GPUs or it

pulls for completion of asynchronous communication. The task

execution relies on K-Stream [11] to handle communication

and kernel execution.

When a task finishes, it may activate successor tasks that are

pushed to the queue of a GPU that stored the output tile matrix.

Among the available scheduling algorithms in XKaapi [16],

we have only kept the owner compute rule strategy in XKBlas

to map a task on the GPU that stores one of its output. If none

of the task outputs is already mapped to GPUs, the library push

the task to a random selected GPU.

B. Distributed Cache and Coherency operator

To execute a task, the scheduler creates a local copy of

each parameter and transfers input data from a valid copy

located on a GPU or main memory. The runtime keeps track of

address spaces, data copies and their state. The decision about

the source address space is always to select the closest with

respect to the GPU topology or at random if several resources

have a valid copy at the same distance.

After a synchronisation point, all tasks previously spawned,

and their descendants, are completed. Nevertheless, host mem-

ory remains non-coherent with previous results of computa-

tion: new tasks could be spawned and the runtime will transfer

data among resource, but the user could not directly read the

host memory to access the result. He must explicitly ask the

runtime to make coherent the host memory with respect to all

the updated copies on the GPUs. XKblas has a function to

update the upper or lower (or both) triangular part of a matrix

on the host called xkblas_memory_coherent_async.

Its implementation simply spawns a task for each block of

matrix Ai,j concerned with triangular part. The task takes a

read access mode on the block and initiates the asynchronous

copy back to the host. The operation is asynchronous and

completion is guaranteed after the next synchronisation point.

Note that a complementary function allows to request only

one tile to be coherent.

C. Asynchronous API design

All XKBlas operators have a non blocking semantic: the

caller should explicitly issue a synchronisation call to en-

sure that previous asynchronous operations have completed.

XKBlas low-level routines define non-blocking function calls

for computation, data annotation and memory coherency.
XKBlas high-level methods have CBLAS and Fortran

BLAS entry point with blocking semantics. Typically the
XGEMM function is implemented on top of non-blocking API
using the following sketches:

void dgemm( char * transa, char * transb,
int * m, int * n, int * k,
double* alpha, double* A, int * lda,
double * B, int * ldb,
double * beta, double * C, int * ldc)

{
// asynchronous tile dgemm
xkblas_dgemm_async(transa, transb,

*m,*n,*k,alpha,A,*lda,B,*ldb,beta,C,*ldc);
// requests to make coherent full C matrix
xkblas_memory_coherent_async(

UPPER|LOWER,
*m,*n,C,*ldc,sizeof(double)

);
xkblas_sync();

}

The xkblas_dgemm_async call returns immediately after

pushing a request to make coherent full C matrix (upper and

lower parts). Visibility of the request is ensured after the
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next synchronisation point xkblas_sync that waits until

completion of all previous spawned tasks and their children.

D. CUDA memory register call

To be able to overlap transfers between device and host with

kernel execution, transferred data must have been registered

to CUDA using cudaHostRegister. The purpose is to

page lock the memory in order to let DMA to transfer

data. Nevertheless, the cost of this function is significant

especially when it is difficult to reuse already pinned memory.

Moreover, we have noticed that the total time spent in this

cudaHostRegister call is multiplied by 2 when using 4

GPUs instead of 1 GPU.

The XKBlas API provides an asynchronous function called

xkblas_register_memory_async
to overlap the memory pinning by other operations (computa-

tion, matrix assembly, ...). The host registration is done by a

specific thread using HostRegisterPortable flag and the result

is visible to all CUDA contexts as ensured by the CUDA

specification: “memory returned by this call will be considered

as pinned memory by all CUDA contexts, not just the one that

performed the allocation”. This function introduces an implicit

synchronisation with future computational kernels which are

launched only when all requests to page-lock data accessed

by task are completed.

E. Composition of BLAS kernels

In XKBlas all kernels are invoked through asynchronous

function calls such as xkblas_dgemm_async. The feature

is the simple proposal for composition of BLAS kernels in

XKBlas. Composition is noted to be one of the key point for

reaching high performance in sparse direct solver [22], [23]

such as MUMPS [21].

Moreover, if two tasks generated by the same thread and

the first one writes while the second reads the same tile, they

would create a true dependency thanks to the asynchronous

semantics of the XKaapi runtime. Thus any sequence of user

function calls generating tasks would allow to define point to

point synchronisation between tasks among different function

calls. The absence of synchronous semantics that force syn-

chronization between calls permits to keep busy the GPUs.

Other BLAS library runtime (Chameleon/StarPU, Magma,

PaRSEC) expose asynchronous tile API for asynchronous

function calls in order to favor composition but they impose

implicit coherency on synchronisation point. cuBLAS-XT has

synchronous invocation of BLAS kernel.

Instead of a set of implicit data transfers after kernel

completion, XKBlas adopts a lazy approach where the user

should describe which matrix or subparts of matrix has to be

made coherent on the CPU. This is the key point for efficient

composition of BLAS subroutines to avoid unnecessary data

transfers.

The sequence of one BLAS kernel, that

generates computational tasks, followed by a call to

xkblas_memory_coherent_async is a typical

composition that allows to overlap computation with

TABLE I
MAIN CHARACTERISTICS OF MULTI GPU SYSTEMS.

Name CPU GPU
Chifflot 2 Xeon(R) Gold 6126 2 NVIDIA Tesla V100-PCIE, 32GB

2.6GHz CUDA-9.0
Blaise 2 Xeon E5-2699 v4 4 NVIDIA Tesla P100-SXM2, 16GB

2.2GHz CUDA-10.0

data transfers back to the CPU. At runtime, because of the

data dependency, the transfer to CPU memory is executed as

soon as tile results are computed. In Chameleon/StarPU, to

initiate as soon as possible such transfer of result to CPU,

each tiled algorithm unrolls a data flow graph with annotation

to flush back when the computed tile is done. The drawback

of this approach is extra data transfers between host and

GPUs a priori to the real composition of tiled algorithms.

Nevertheless, in XKBlas the user has an explicit control over

the usage of communication links between CPU and the

GPUs which are a shared and limited resources.

V. EXPERIMENTAL RESULTS

Experiments have been made on two multi-GPU systems

described in Table I. The interconnect is PCIe (Gen3) on

Chifflot, and NVLINK-1 on Blaise. We used the public version

of BLASX [14], version 1.2.6 of StarPU and Chameleon with

up-to-date git hash g1f14c6b25.

A. Comparison with state of the art multi-GPU libraries

Figure 3 reports average performance results of DGEMM,

DSYMM, DSYRK, DSYR2K, DTRMM and DTRSM increas-

ing the matrix dimension. We setup benchmarks over Blaise

(Table I) using double precision routines. Matrices are initial-

ized with random numbers. We evaluated XKBlas performance

against cuBLAS-XT and BLASX that have LAPACK matrix

data layout. Note that even if the authors of BLASX reported

performance with almost all BLAS L3 kernels in [14], the

public available code only contains GEMM routines.

Each point was a mean of 8 runs. For each matrix dimension

and runtime system, we only report the performance corre-

sponding to the tile size that maximizes it among the experi-

mented tile sizes (1024, 2048, 4096). Time to transfer data to

GPUs and results to the host was included. We excluded the

time to page lock the memory because applications should

have the capacity to amortize its cost when using the same

memory multiple times.

XKBlas outperformed other libraries for all configurations.

Note that the performance of XKBlas using 1 GPU was

better than cuBLAS-XT with 2 GPUs. Performance of XKBlas

over 2 GPUs was similar or better than the performance of

cuBLAS-XT with 4 GPUs.

B. Composition of BLAS TRSM+GEMM

We built a benchmark composing TRSM and GEMM

BLAS kernels as it appears on the MUMPS applica-

tion [21]. In [22] the authors report such fundamental

5
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Fig. 3. Performance of BLAS L3 kernels on 4 P100-SXM2 NVIDIA GPUs (Blaise) for several BLAS double precision routines with LAPACK matrix layout.
Memory was already pinned before timings.

composition in WSMP application. The XKBlas version

was a sequence of calls: xkblas_dtrsm_async fol-

lowed by xkblas_dgemm_async. The Chameleon/StarPU

version was based on asynchronous API for TRSM and

GEMM. The cuBLAS-XT relied on synchronous calls to

cublasXtDtrsm followed by cublasXtDgemm. It is

not possible to experiment with BLASX because the pub-

lic version of the routines does not include multi-GPUs

version of TRSM. For all programs, all data initially re-

side on the host memory and we force results back to

the host. In asynchronous XKBlas it was made by calling

xkblas_memory_coherent_async.
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Fig. 4. Left: Cumulative size of data transfers on 4 GPUs during the composition of TRSM + GEMM between host and GPUs on Blaise and 3 size of
matrices. Runs with cuBLAS-XT, Chameleon/StarPU (tile version) and XKBlas. Right: corresponding performance for varying matrix dimension on for GPUs.

Figure 4 reports performance and cumulative size in GByte

of data transferred from host to GPUs (green, label H2D),

GPUs to host (blue, label D2H) and GPU to GPU (red,

label D2D) on three set of matrices and on four GPUs.

First, cuBLAS-XT showed the highest communication vol-

ume. Moreover, it never uses the fast device to device NVIDIA

NVLINK communication link (label D2D), which impacted its

performance.

XKBlas had the lowest communication volume compared to

others. As presented in Section IV-E, XKBlas allows to reduce

the volume of communication between GPUs to host (blue

D2H part in the bar chart) by decoupling completion of kernel

to communication of results. The programmer is responsible

for calling the necessary function to make the host memory

coherent.

We note that on bigger dimensions (≥ 10k) XKBlas outper-

formed Chameleon on this composition because of the higher

communication footprint of Chameleon, which was about 2

times greater than XKBlas. Chameleon performed better on

smaller matrices.

C. Performance of Tile versus LAPACK layout

Figure 5 reports experiments with runtime systems that have

LAPACK matrix layout representation. It has been argued

that tile matrix representation, where each tile is contiguous

in memory, is more friendly to cache and TLB [9], [17].

PaRSEC [18] has hybrid matrix representation: at the coarse

level, matrix is stored with tile matrix representation. Each

coarse tile may be decomposed into fine tiles with LAPACK

matrix layout.

In XKBlas, a GPU always holds a tile as contiguous

memory region. Data transfer between GPU and host relies

on cuMemcpy2DAsync that allows to change online from/to

LAPACK matrix layout to/from contiguous memory region.

A relevant question would be: What is the real gain of

tile representation when most of the dense linear algebra

computations are performed on GPUs on contiguous memory

region?

Fig. 5. DGEMM comparison of XKBlas over Chameleon/StarPU and
PaRSEC with tile matrix representation. Solid lines show performance on
Blaise with 4 GPUs; dashed lines on Chifflot with 2 GPUs.

We partially give an answer with Figure 5 which reports ex-

perimental results of DGEMM with tile matrix representation

of Chameleon [15] and PaRSEC [18]. In all configurations,

the time encompass data transfer of the operands and transfer

of the result matrix to the host. Memory was already pinned

before timings. On Chifflot (V100 dashed lines) there was no

notable difference of using LAPACK matrix layout of XKBlas

versus the tile matrix representation of Chameleon. On Blaise

(P100, solid lines) XKBlas outperformed Chameleon and its

tile representation. We suspect that most of the performance

gap was due to StarPU under Chameleon rather than the tile

representation. At matrix size of 32768, Chameleon/StarPU

has systematically reported a bad performance without a clear

explanation. PaRSEC was the less performant runtime system

and it seems to suffer from high overhead in management of

large number of small tiles.

We argue that forcing tile matrix representation in complex

runtime systems for dense linear algebra on multi-GPUs is

counterproductive on addressing the problem of accelerating
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legacy application. Tile representation, which aims to promote

strong code modifications, seems not competitive with libraries

such as XKBlas or even BLASX.

VI. CONCLUSION

In this paper we presented XKBlas, a high-performance

BLAS-3 library to exploit multi-GPUs based on the XKaapi

runtime system. The main contributions of XKBlas are based

on two powerful concepts: asynchronous function calls to

compose BLAS kernels; and explicit operator to make coher-

ent CPU that allows to move less data during a composition

of BLAS. Scheduling is based on owner compute rule with

auxiliary operators to give hints to the scheduler. Moreover,

our experimental results showed that XKBlas outperformed

BLASX and cuBLAS-XT in almost all configurations or it

reaches equivalent performance results.

XKBlas has the potential to be widely used by the scientific

community on legacy applications relying on dense linear

algebra operations. This paper focus the API and performance

of GEMM kernel but the library has complete set of BLAS

level 3 kernel. XKBlas currently develops heuristics for a

better use of huge memory capacity of multi-GPUs in order

to increase the bandwidth and reduce latency in GPU-to-GPU

communication.

ACKNOWLEDGE

This work has been partially supported by the projects:

UFSM/FATEC through project number 041250-9.07.0025

(100548); “GREEN-CLOUD: Computação em Cloud com

Computação Sustentavel” (#16/2551-0000 488-9), from

FAPERGS and CNPq Brazil, program PRONEX 12/2014.

Research leading to these results has in part been carried out

on an UFRGS/Brazil server that was supported by Petrobras

project 2016/00133-9.

REFERENCES

[1] “An updated set of basic linear algebra subprograms (blas),” ACM Trans.
Math. Softw., vol. 28, no. 2, pp. 135–151, Jun. 2002.

[2] F. D. Igual, E. Chan, E. S. Quintana-Orti, G. Quintana-Orti, R. A. van de
Geijn, and F. G. V. Zee, “The flame approach: From dense linear alge-
bra algorithms to high-performance multi-accelerator implementations,”
Journal of Parallel and Distributed Computing, vol. 72, no. 9, pp. 1134
– 1143, 2012, accelerators for High-Performance Computing.

[3] F. G. Van Zee and R. A. van de Geijn, “Blis: A framework for rapidly
instantiating blas functionality,” ACM Trans. Math. Softw., vol. 41, no. 3,
pp. 14:1–14:33, Jun. 2015.

[4] E. Chan, F. G. Van Zee, P. Bientinesi, E. S. Quintana-Orti, G. Quintana-
Orti, and R. van de Geijn, “Supermatrix: a multithreaded runtime
scheduling system for algorithms-by-blocks,” in Proc. of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel program-
ming, ser. PPoPP ’08. New York, NY, USA: ACM, 2008, pp. 123–132.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[6] E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard, “Multi-
gpu and multi-cpu parallelization for interactive physics simulations,” in
Proceedings of the 16th International Euro-Par Conference on Parallel
Processing: Part II, ser. Euro-Par’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 235–246.

[7] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra
for hybrid GPU accelerated manycore systems,” Parallel Computing,
vol. 36, no. 5-6, pp. 232–240, Jun. 2010.

[8] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra
solvers for multicore with GPU accelerators,” in Proc. of the IEEE
IPDPS’10. Atlanta, GA: IEEE Computer Society, April 19-23 2010,
pp. 1–8.

[9] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault,
and S. Tomov, “Faster, Cheaper, Better – a Hybridization Methodology
to Develop Linear Algebra Software for GPUs,” in GPU Computing
Gems, W. mei W. Hwu, Ed. Morgan Kaufmann, Sep. 2010, vol. 2.
[Online]. Available: https://hal.inria.fr/inria-00547847

[10] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell, E. Ayguadé,
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