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Abstract—Since the demand for computing power increases,
new architectures arise to obtain better performance. An impor-
tant class of integrated devices is heterogeneous architectures,
which join different specialized hardware into a single chip, com-
posing a System on Chip - SoC. Within this context, effectively
splitting tasks between the different architectures is primal to
obtain efficiency and performance. In this work, we evaluate two
heterogeneous architectures: one composed of a general-purpose
CPU and a graphics processing unit (GPU) integrated into a
single chip (AMD Kaveri SoC), and another composed by a
general-purpose CPU and a Field Programmable Gate Array
(FPGA) integrated into a single chip (Intel Arria 10 SoC). We
investigate how data partitioning affects the performance of each
device in a collaborative execution through the decomposition
of the data domain. As a case study, we apply the technique
in the well-known Lattice Boltzmann Method (LBM), analyzing
the performance of five kernels in both architectures. Our ex-
perimental results show that non-uniform partitioning improves
LBM kernels performance by up to 11.40% and 15.15% on AMD
Kaveri and Intel Arria 10, respectively.

Index Terms—Heterogeneous Architectures, Collaborative Ex-
ecution, Non-Uniform Partitioning, FPGA, GPU, Lattice Boltz-
mann Method

I. INTRODUCTION

The computational power currently available in high-

performance computing systems makes it possible to perform

extremely complex tasks in a few hours, minutes, seconds, or

even in real-time. Such computational power usually results

from the combination of a large number of devices of different

architectures and, consequently, with different computational

powers (such as CPU, GPU, and FPGA) [1], [2]. However,

as the devices that make up these systems evolve and become

more and more powerful, they require an increasing amount of

energy that combined generates massive power consumption.

Despite the increasing power consumption of devices that

make up high-performance computing systems, there are some

devices whose power consumption is significantly lower.

Devices with ARM or FPGA architectures typically have

significantly lower power consumption than CPU and GPU

devices, for instance, [3]. However, low-power devices usually

also have lower computational power.

Although the heterogeneity of devices in high-performance

computing systems is no longer a novelty, in the last few

years some heterogeneous architectures have appeared that

integrate into a single processor chip multiple architectures.

By replacing external connections between different devices

(usually PCIe connections) by significantly shorter and faster

internal connections to the chip, it becomes possible to share

the same memory space and, consequently, to eliminate data

transfers between different memory addresses. These opti-

mizations, together with a reduced area for the manufacture

of multiple architectures where previously only one would be

fabricated, make them low-power architectures [4], [5].

Some examples of currently available heterogeneous archi-

tectures are AMD Kaveri SoC [6], that integrates x86-64 CPU

and Radeon R7 GPU processing units in the same chip, Intel

Arria 10 SoC [7], that integrates ARM CPUs and an FPGA,

and Xilinx Zynq SoC [8], that integrates ARM CPUs and an

FPGA in the same chip. Although they are architectures with

lower computational power, as in high-performance computing

systems, to unlock its maximum computing power, it is

necessary to distribute the workload of tasks between the

devices available in the architecture in order to compute them

collaboratively. However, since devices typically have different

computing capabilities, it is necessary to find the optimal

division of workload between the different devices.

In this paper, we investigate the performance impact of col-

laborative execution on two System-on-chip devices based in

CPU+GPU and CPU+FPGA architectures using non-uniform

data partitioning for each device. Our case of study is the five

distinct kernels from the Lattice Boltzmann Method (LBM) in

order to evaluate individual and collaborative execution perfor-

mance of heterogeneous architectures. The main contributions

of this paper are:

• We evaluate the performance of two heterogeneous ar-

chitectures: AMD Kaveri SoC and Intel Arria 10 SoC;

• We analyze the performance of each device present in

both architectures individually and in a collaborative way;

• We show that non-uniform partitioning on collaborative

execution improves performance of LBM kernels;

• We present an OpenMP + OpenCL D3Q19 Lattice Boltz-

mann implementation for heterogeneous architectures.

The remainder of this paper are organized as follows.

Section II discusses related work. Section III presents sev-

eral details about the Lattice-Boltzmann Method (LBM) and

Section IV describes our parallel implementation for two low-

power heterogeneous platforms. Our experimental results are
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presented in Section V. Section VI presents the discussion,

and finally Section VII presents conclusions and future work.

II. RELATED WORK

Many of the related works used GPUs or FPGAs as an

offload target to accelerate applications. The authors in [9]

evaluated performance and power consumption of kernel

computations on an Arria 10 FPGA over an Intel Xeon

Phi KNL and an NVIDIA Tesla K80. In [10], the authors

propose a novel approach that automatically optimizes task

partitioning for different inputs and architectures. In [11]

the authors evaluate the reliability behavior of AMD Kaveri

aiming to find which configuration provides the lowest error

rate or allows the computation of the highest amount of

data before experiencing a failure. In [12], [13], [14] the

authors accelerated deep learning networks using OpenCL and

FPGAs. In [15] they designed computational intensive kernels

of a tsunami simulator on FPGAs and GPUs using OpenCL.

The authors in [16] evaluated the Rodinia benchmark over

GPUs and FPGAs with OpenCL. In [17], [18] they combined

spatial and temporal blocking to evaluate performance and

power efficiency of stencil computations on FPGAs. In [19]

they optimized geophysics models on GPUs. Regarding LBM

kernels, the authors in [20] optimized for GPUs and in [21]

they studied optimization strategies for accelerators such as

GPUs and Intel Xeon Phi KNL. In [22] a memory-aware 2D

LBM was implemented for Intel Xeon manycore processors.

Several authors have studied collaborative processing on

heterogeneous devices. Hetero-Mark [23] is a benchmark suite

for collaborative processing for CPU-GPU architectures with

support to OpenCL. They analyzed experimental results on

an AMD A10-7850K APU. Chai [24] is also a collaborative

processing benchmark suite for integrated devices. It compared

task and data partitioning strategies and has support to FPGAs

and GPUs. In [25], they evaluated two FPGA systems with

Chai benchmark and analyzed the task and data partitioning.

The authors in [26] designed binarized neural networks to take

advantage of FPGA systems, and compared performance and

energy consumption over an NVIDIA Titan X GPU. In [27]

they optimized a Binarized Neural Network and evaluated its

performance in an Intel Xeon E5-2699v3 CPU, an NVIDIA

GTX Titan X GPU, an Intel Stratix V and an Intel Arria 10

FPGA and a custom ASIC platform without using OpenCL

architecture. The performance analysis of collaborative com-

puting in two heterogeneous integrated systems using OpenCL

was presented by [28]. They evaluated an AMD A10-7850K

platform with CPU cores and GPU computing units integrated

into the same chip and an E3-1240 v3 CPU chip connected

through PCIe to an Intel Stratix V GX FPGA on a Terasic

DE5-Net board. The results showed that in both platforms, the

use of the two available devices in a collaborative way led to

better performance compared to use CPU only or GPU/FPGA

only.

Most of the works previously presented evaluate the perfor-

mance of the different processing units individually. However,

the use of these devices in collaborative processing can lead to

significant performance improvements, as previously demon-

strated by [28].

III. USE-CASE APPLICATION

A. Lattice-Boltzmann Method

The Lattice Boltzmann Method (LBM) is a numerical

method for fluid flow simulations, and fluid physics modeling

originated from discrete particle kinetics called Lattice Gas

Automaton (LGA). The Lattice Gas Automaton is constructed

as a simplified, fictitious molecular dynamic in which space,

time, and particle velocities are all discrete [29]. Thus, in LBM

space, time and velocity are also discrete.

Lattice-Boltzmann Method is often adopted as an alternative

technique for computational simulations of Fluid Dynamics

instead of conventional numerical schemes based on dis-

cretizations of macroscopic continuum equations as discrete

Navier-Stokes equation solvers [29]. In LBM, a lattice is

formed by discrete points, each with a fixed number of discrete

displacement directions on which particles perform spatial

displacements at each iteration, enabling simple simulations

of physical properties of fluid flows [22].

Fig. 1. D3Q19 lattice geometry.

In this paper, we used a three-dimensional lattice structure

with nineteen propagation directions, as shown in Figure 1 and

defined below [30]:

• A static point at coordinate (0, 0, 0), where the particle

has zero velocity. The value of ωi in this case is 1/3.

• Six nearest directions (−1, 0, 0), (+1, 0, 0), (0,−1, 0),
(0,+1, 0), (0, 0,−1) and (0, 0,+1), with unity velocity

and ωi = 1/18.

• Twelve diagonal line neighbors (1, 1, 0), (−1, 1, 0),
(1,−1, 0), (−1,−1, 0), (1, 0, 1), (−1, 0, 1), (1, 0,−1),
(−1, 0,−1), (0, 1, 1), (0,−1, 1), (0, 1,−1) and

(0,−1,−1), with velocity
√
2 and ωi = 1/36.

To deal with the collisions against the boundaries of the

structure we use a mechanism called Bounce-back which

consists in the inversion of the speed vectors directions each

time that a collision occurs against a static point preventing

the forces leaving, returning them to the fluid [31]. For the

experiments, we use a rectangular obstacle placed in the canal

at the first third of the x-axis, as illustrated in Figure 2.

B. Domain Decomposition

To be able to use multiple devices simultaneously to com-

pute the fluid dynamics of the Lattice-Boltzmann method in
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Fig. 2. Rectangular obstacle of the experiments.

parallel, we divide its domain into subdomains by dividing the

original three-dimensional domain in the z axis. In this way,

each device can apply the kernels of the method in parallel on

each subdomain. However, dividing the domain into multiple

subdomains leads to inconsistencies in macroscopic values of

the fluid due to dependencies on the nineteen propagation

directions of the neighbor’s particles of each particle of the

fluid according to the Figure 1. Therefore, we use ghost zones

to deal with the inconsistencies arising from the division of

the domain solving the problem completely.

Since each particle of the fluid has nineteen directions of

propagation of the forces in the model D3Q19, as shown in

Figure 1, as the fluid flows the forces of eighteen propaga-

tion directions of each particle are propagated through the

neighboring particles in the fluid. With the division of the

domain into subdomains, the existence of this data dependence

makes it necessary, for particles located at the edges of each

subdomain, to access data located in neighboring subdomains.

However, the access to data located in other subdomains being

manipulated by other devices can lead to concurrency in data

access and consequently in inconsistencies. Therefore, to deal

with these issues, we use ghost zones to keep a copy of the

edges of the neighboring subdomains of each subdomain.

Beyond the division of the domain into subdomains to paral-

lelize the routines of the method, the routines themselves were

also divided into kernels. Each kernel has data dependencies

which must be obeyed to ensure the consistency of the results

of the method. In this manner, there is an order in which the

kernels need to be executed by each device to simulate the

flow of the fluid in its subdomain correctly. Besides that, when

multiple devices are used collaboratively, the ghost zones of

the neighbor subdomains of each device need to be updated.

This ghost zone updates introduce a synchronization point in

parallel execution of the method when using multiple devices.

Therefore, to deal with these issues, we use ghost zones

to keep a copy of the edges of the neighboring subdomains

of each subdomain. Figure 3 shows an illustration of the

procedures for updating ghost zones of two subdomains in two

devices. In this work, as in [32], we decompose the domain

of the Lattice-Boltzmann method only in one dimension, in

this case in dimension z. Besides that, as we use at most two

devices to compute the method and use a circular strategy

to simulate the flow of fluids in the method, meaning that

the particles leaving one side of the domain return on the

opposite side in order to preserve the macroscopic values of

the fluid, there are only four ghost zones that correspond to

the four faces at the z dimension of the subdomains. These

four faces are first copied to a temporary buffer by each

device, and then each device copies the adjacent faces from

the temporary buffers to its local copy of the z dimension faces

of it neighboring subdomain. As can be seen in Figure 3, the

faces where the domain is divided are crossing copied, and

the faces at the edges of the original domain are copied to the

opposite side of the subdomains.

Fig. 3. LBM implementation with ghost zones.

C. Lattice-Boltzmann Kernels

The Lattice-Boltzmann method routines are composed of

five well-defined kernels. The first kernel, called INITIALIZE,

assigns an initial macroscopic value for each of the nineteen

propagation directions of each particle of the fluid in the

three-dimensional model used in our work. After initializing,

the second kernel to be executed redistributes the forces of

some of the propagation directions of each particle of the

fluid and, therefore, is called redistribute. The third kernel,

called PROPAGATE, is in charge of propagating the forces

of the particles according to the flow of the fluid. After the

propagation, the fourth kernel deals with the collision of the

particles in the fluid with the barriers present in the domain,

as described in Section III-A, and is called BOUNCEBACK.

The fifth and last kernel relaxes the forces of each of the

propagation directions of each particle in the fluid, and it is

called RELAXATION.

1: Initialize parameters

2: for Each Nx ×Ny ×Nz do
3: INITIALIZE conditions

4: end for
5: for Each time step do
6: for Each Nx ×Ny ×Nz do
7: REDISTRIBUTE

8: PROPAGATE

9: BOUNCEBACK

10: RELAXATION

11: end for
12: end for

Fig. 4. D3Q19 Lattice Boltzmann Method Algorithm

These five kernels must always be executed in the same

sequence as described above. After the initialization of the

macroscopic values in kernel INITIALIZE, the remaining four

kernels need to be executed sequentially t max times, as shown

in Figure 4. When two devices are used, after the execution
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of the redistribute kernel, each device copies its edge faces

to the temporary buffers and wait for both devices to finish.

Then, each device copies the neighboring subdomain edge

faces from the temporary buffers to its local copies and execute

the remaining three kernels, and this cycle repeats t max - 1
times.

IV. COLLABORATIVE LBM IMPLEMENTATION

In this section, we describe the collaborative implementation

of the Lattice-Boltzmann method developed for two low-

power heterogeneous platforms: One is four CPU cores and

eight GPU computing units integrated into a single chip,

named AMD Kaveri; and two CPU cores and an FPGA with

660,000 logic blocks integrated in the same chip, named Intel
Arria 10. In order to use both sets of processing units available

in each platform in a collaborative way, we decompose the

method’s data domain into two subdomains. Besides that, to

be able to evaluate the performance of each kernel of the

method on each platform and find the domain decomposition

that optimizes the performance of the method, we implement

a variable domain decomposition to enable the assignment of

different subdomain sizes for each set of processing units on

each platform.

As both platforms have support for the OpenCL archi-

tecture, we can use the OpenCL language to implement

our Lattice-Boltzmann method and use their heterogeneous

processing units. However, while the AMD Kaveri platform

is fully OpenCL capable, meaning that both CPU and GPU

are OpenCL devices and, in this way, can run OpenCL code,

the Intel Arria 10 is only partially OpenCL capable and only

the FPGA can run OpenCL code. In this way, we implement

the parallel heterogeneous version of the Lattice-Boltzmann

method using the OpenMP Application Programming Interface

(API) to run the method’s kernels in the CPU cores of both

platforms and the OpenCL language to run the method’s

kernels in the GPU and FPGA processing units of the AMD

Kaveri and Intel Arria 10 platforms, respectively.

__kernel void redistribute(...)
x = get_global_id(0);
y = get_global_id(1);
z = get_global_id(2);
/* redistribute computation */

Fig. 5. OpenCL kernel code snippet.

In OpenCL language, each of the Lattice-Boltzmann

kernels become OpenCL kernels as in Figure 5. The

keyword kernel represents OpenCL kernels. Function

get global id(dim) returns the unique global work-item ID

value for dimension identified by dim. Initially, to be able

to execute kernels in the devices of the OpenCL platform,

it is needed to create an OpenCL context using the IDs of

the devices. After, these kernels can be queued in OpenCL

queues with First In First Out (FIFO) type data structure

from which they are then delivered for the devices associated

with the queue by the OpenCL runtime. Each queue can be

associated with one or more OpenCL devices, and in our

OpenCL implementation of the Lattice-Boltzmann method, we

use an OpenCL queue for GPU / FPGA device.

void relaxation(...)
#pragma omp parallel for collapse(3)
for(x = 0; x < lx; x++)

for(y = 0; y < ly; y++)
for(z = 0; z < lz; z++)
/* relaxation computation */

Fig. 6. OpenMP kernel code snippet.

In the CPU, however, as it is not an OpenCL device,

we use the OpenMP API to parallelize the kernels of the

method. Figure 5 shows a code snippet for the OpenMP

implementation. As the kernels go through all particles in the

three-dimensional domain, there are three nested for loops on

which we use OpenMP for loop pragmas to parallelize the

kernels in CPU. To achieve better performance, we collapse

the three nested for loops using the OpenMP pragma #pragma
omp parallel for collapse(3) on all kernels.

In this implementation, a kernel is queued in the FPGA

device queue, and then the corresponding kernel is executed

in the CPU. Only after executing this kernel in the CPU, we

can queue the next kernel in FPGA device queue and then

execute the corresponding kernel in the CPU. Thus, after queu-

ing the redistribute kernel and executing the corresponding

kernel in the CPU, queues a copy of the edge faces of the

FPGA subdomain and copies its subdomain edge faces to the

temporary buffers. After copied, the CPU waits for the copy of

the FPGA subdomain edge faces and then copies it from the

temporary buffer to its local copy, and the remaining kernels

and kernels are executed. This cycle repeats t max - 1 times.

V. EXPERIMENTAL RESULTS

This Section details the heterogeneous platforms, the

methodology used in our experiments, and the results.

Fig. 7. Average execution time of the three most representative kernels on
the CPU and GPU devices of the AMD Kaveri platform on each workload
proportion using the OpenMP + OpenCL version with a domain of size 96×
96× 96.
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TABLE I
AVERAGE EXECUTION TIME OF ALL KERNELS ON THE CPU AND GPU DEVICES OF THE AMD KAVERI PLATFORM ON EACH WORKLOAD PROPORTION

USING THE OPENMP + OPENCL VERSION WITH A DOMAIN OF SIZE 96× 96× 96.

80 x 16 64 x 32 48 x 48 32 x 64 16 x 80

Kernel CPU only CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU GPU only

Initialize 0.059 0.049 0.002 0.040 0.004 0.030 0.006 0.022 0.010 0.013 0.012 0.006

Redistribute 17.588 8.469 0.796 6.342 1.616 4.827 3.153 3.766 4.012 1.987 3.989 4.811

Propagate 18.212 9.749 3.157 8.811 6.307 7.294 8.65 4.99 9.908 1.934 10.313 9.846

Bounceback 1.544 0.925 0.024 0.732 0.048 0.593 0.076 0.445 0.102 0.227 0.122 0.174

Relaxation 24.785 13.659 0.772 11.104 1.518 8.603 2.279 6.895 2.884 3.549 3.105 3.636

A. Platforms and Experimental Design

We used the following two platforms. The first platform,

called A10-7870K consists of 4 x86-64 CPU cores and, 8

Radeon R7 GPU computing units integrated on the same chip

and is made by AMD. It has 6 GB of RAM, Ubuntu 14.04

(trusty) operating system, OpenCL Software Development Kit

(SDK) version AMD APP SDK-3.0 and Clang C/C++ com-

piler version 7.0. The second platform, called A10SoCFPGA,

consists of 2 ARM CPU cores and an FPGA with 660,000

logic blocks integrated into a single chip and made by Intel. It

has 1GB of RAM, Angstrom 2014.10 operating system, Intel

FPGA Runtime Environment (RTE) for OpenCL version 18.1

and ARM GCC C/C++ compiler version 4.7. From now, we

will call the platforms AMD Kaveri and Intel Arria 10. Table II

summarizes the environments.

TABLE II
CONFIGURATION OF EVALUATED PLATFORMS.

Platform Parameter Value

AMD Kaveri
CPU AMD A10-7870K, 4 cores
GPU AMD Radeon R7, 8 cores
Memory 6GB DDR3-2133

Intel Arria 10
CPU ARM Cortex-A9, 2 cores
FPGA 660 000 logic blocks
Memory 1GB

Both architectures support the OpenMP [33] and OpenCL

language [34]. However, only AMD Kaveri supports OpenCL

on its two devices. In Arria 10 only the FPGA supports

OpenCL code, which is converted automatically using a High-

Level Synthesis compiler whose resulting binary is then used

to program the FPGA by the host (CPU) through the OpenCL

language. Thus, in both Arria 10 and AMD Kaveri, we

evaluate the performance of the method in an OpenMP +

OpenCL implementation (OpenMP in CPU and OpenCL in

GPU / FPGA). The optimization flag used in both was -O3.

We performed experiments in both AMD Kaveri and Intel

Arria 10 platforms using modified domain decomposition. The

modified domain was decomposed in two subdomains, one for

each device. The proportion of data assigned to each device

varies from 0 to 96. 0 means that the kernel is executed

individually in one device (CPU, GPU, or FPGA). For the

collaborative execution, we decomposed the domain in z non-

uniformly between the resources. We started from a subdomain

of size 16 for the CPU to a subdomain of size 80, increasing

by 16 the CPU proportion and consequently decreasing the

GPU or FPGA proportion. For example, a domain proportion

of 33.3% of a domain of size 96×96×96 for the CPU and the

remaining 66.7% of this domain for the FPGA corresponds to

a subdomain of size 96×96×32 being processed by the CPU

and a subdomain of size 96× 96× 64 being processed by the

FPGA.
We measured the execution time of each device resource

running the Lattice Boltzmann Method with different workload

proportions. Besides, each experiment was executed at least

ten times, with a confidence interval of 95% calculated with

the Students t-distribution.

B. Results
In this section, we present the performance results of our

collaborative execution strategy over the AMD Kaveri and

Intel Arria 10 SoCs. Our case of study was the computing

kernels of the LBM D3Q19 application. We performed exper-

iments using CPU only, GPU only and CPU + GPU through

a three-dimensional domain of size 96× 96× 96. The domain

size is limited by the Intel Arria memory which is 1 GB.
Table I presents the average execution time of the five

kernels of the method in the OpenMP + OpenCL version on

the AMD Kaveri platform. The first column is the kernels

name. The following columns are different decomposition

sizes of the method domain, from CPU only to GPU only. The

bold cells are the ones that performed better, and consequently,

had the best partitioning for each kernel. INITIALIZE and

BOUNCEBACK kernels performed better in GPU only execu-

tion. Collaborative execution did not improve the performance

of these kernels because their execution time was too short.

The REDISTRIBUTE and PROPAGATE kernels performance

was improved by 12.09% and 12.15%, respectively. The

RELAXATION kernel had a low-performance improvement of

2.39%. Using CPU only the total execution time was 62.19

seconds, and using GPU only the total execution time was

18.47 seconds. However, collaboratively using both CPU and

GPU and dividing the domain into five distinct proportions

(GPU only, 16 × 80, 48 × 48, GPU only and 16 × 80), the

132



TABLE III
AVERAGE EXECUTION TIME OF THE ALL KERNELS ON THE CPU AND FPGA DEVICES OF THE INTEL ARRIA 10 PLATFORM ON EACH WORKLOAD

PROPORTION USING THE OPENMP + OPENCL VERSION WITH A DOMAIN OF SIZE 96× 96× 96.

80 x 16 64 x 32 48 x 48 32 x 64 16 x 80

Kernel CPU only CPU FPGA CPU FPGA CPU FPGA CPU FPGA CPU FPGA FPGA only

Initialize 0.277 0.247 0.025 0.209 0.052 0.177 0.081 0.155 0.110 0.140 0.127 0.139

Redistribute 83.207 73.151 6.303 62.525 13.262 47.550 20.329 25.767 19.680 14.409 24.666 29.312

Propagate 146.685 117.726 19.007 93.066 38.473 73.195 57.700 47.511 71.158 22.480 84.810 83.020

Bounceback 14.754 12.636 0.379 10.385 0.629 6.06 0.9 2.028 1.222 0.954 1.367 1.691

Relaxation 205.069 175.321 13.223 142.31 27.726 107.32 42.587 67.172 48.677 34.67 60.688 72.078

shortest execution time achieved was 16.37 seconds using

a non-uniform partitioning. Thus, non-uniform partitioning

technique improves the entire method performance by 11.39%.

Moreover, looking more closely to Figure 7, where we

show the execution times of each kernel on the seven different

workload proportions, it is possible to observe that the shorter

execution times of each kernel were not necessarily obtained

with the same domain decomposition size. In this Figure, each

solid line represents the CPU execution time for a specific

kernel. The dashed ones represent GPU execution time. Each

color is one of the three most representative kernels. The

best execution time for a specific kernel is at the intersection

of two lines for the same kernel. For instance, we have

the RELAXATION kernel that was executed in 3.55 seconds

in the CPU and 3.10 seconds in the GPU with a domain

decomposition of one subdomain of size 96 × 96 × 16 for

the CPU and another of size 96 × 96 × 80 for the GPU.

Comparing the execution time of the PROPAGATE kernel using

the same domain decomposition size that RELAXATION kernel

performed better to the execution time of the PROPAGATE

kernel using the domain decomposition of 96×96×48 for the

CPU and 96×96×48 for the GPU, which provided the kernel

shortest execution time, the execution time was 16.12% worst

using RELAXATION domain decomposition size. The same

happens with the other kernels. For the INITIALIZE kernel,

the shortest execution time was achieved with a GPU only

execution. For the REDISTRIBUTE kernel the shortest execu-

tion time was achieved with subdomains of size 96× 96× 16
and 96× 96× 80 for the CPU and GPU, respectively, and for

the PROPAGATE kernel with subdomains of size 96× 96× 48
and 96 × 96 × 48 for the CPU and GPU, respectively. For

the BOUNCEBACK kernel, GPU only execution achieved the

shortest execution time.

Table III presents the average execution time of the five

kernels in the OpenMP + OpenCL version on the Intel Arria

10 platform. As in Table I, the first column is the kernels name,

and the following columns are different decomposition sizes

of the method domain, from CPU only to GPU only. The bold

cells are the ones that perform better, and consequently, had the

best partitioning for each kernel. INITIALIZE kernel performed

better in FPGA only execution. Thus, collaborative execution

did not improve its performance because the execution time

is short. BOUNCEBACK was better using a decomposition of

96 × 96 × 16 for the CPU and 96 × 96 × 80 for the FPGA.

It represents a performance improvement of 19.16%. The best

distribution for REDISTRIBUTE and RELAXATION was also

96 × 96 × 16 for the CPU and 96 × 96 × 80 for the FPGA.

For these kernels, most of the work is executed in the FPGA.

It is explained by the number of cores of Intel Arria CPU

which is only two. The PROPAGATE kernel performance was

improved by 14.29% using a distribution of 96× 96× 32 for

the CPU and 96 × 96 × 64 for the FPGA. In this case, the

CPU handle more data. Using CPU only execution, execution

time was 449.99 seconds. Using FPGA only, it was 186.24

seconds. However, collaboratively using both CPU and FPGA

and dividing the domain into five distinct proportions (FPGA

only, 16 × 80, 32 × 64, 16 × 80 and 16 × 80), the shortest

execution time achieved was 158.02 seconds. In the end, the

LBM performance was improved by 15.15%.

Figure 8 presents the average execution time of the three

most representative kernels of the method in the OpenMP +

OpenCL version on the platform Intel Arria 10. The kernels are

REDISTRIBUTE, PROPAGATE and RELAXATION. In axis x, we

have seven different workload proportions from CPU only to

FPGA only. The solid lines represent the CPU execution time

and the dashed ones, GPU execution time. The colors represent

each kernel. The best execution time is at the intersection

Fig. 8. Average execution time of the three most representative kernels on
the CPU and FPGA devices of the Intel Arria 10 platform on each workload
proportion using the OpenMP + OpenCL version with a domain of size 96×
96× 96.
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TABLE IV
PERFORMANCE GAIN USING BEST NON-UNIFORM PARTITIONING FOR COLLABORATIVE EXECUTION OF THE ALL KERNELS ON AMD KAVERI AND INTEL

ARRIA 10 PLATFORMS WITH A DOMAIN OF SIZE 96× 96× 96.

AMD Kaveri Intel Arria 10

Kernel Partitioning Performance gain (%) Partitioning Performance gain (%)

Initialize 0× 80 0.00 0× 80 0.00

Redistribute 16× 80 17.09 16× 80 15.85

Propagate 48× 48 12.15 32× 64 14.29

Bounceback 0× 80 0.00 16× 80 19.16

Relaxation 16× 80 2.39 16× 80 15.80

of two lines for the same kernel. With a three-dimensional

domain of size 96× 96× 96 and using only the CPU device

(leftmost in the figure) the execution time of the kernels were

83.21, 146.68 and 205.07 seconds and using only the FPGA

device (rightmost in the figure), the execution times were

29.31, 83.02 and 72.08 seconds. Nevertheless, collaboratively

using both CPU and FPGA, the kernel’s performance was

improved by up to 19.16%. For instance, REDISTRIBUTE and

RELAXATION performance was better with a distribution of

96 × 96 × 16 for the CPU and 96 × 96 × 80 for the FPGA.

While PROPAGATE performance was better with 96× 96× 32
for the CPU and 96×96×64 for the FPGA. In the same way

as for AMD Kaveri, in Intel Arria 10 the shorter execution

times of each kernel were not necessarily obtained with the

same domain decomposition.

VI. DISCUSSION

Our experimental results provide evidence that collaborative

execution using non-uniform partitioning improve heteroge-

neous architectures performance. As a case of study, we show

that LBM performance was improved by 11.39% and 15.15%

in AMD Kaveri and Intel Arria 10, respectively.
Two points were essential in our approach to achieve

that performance improvement. First, collaborative execution

in heterogeneous architectures is possible due to the tight

integration of the CPUs and the GPUs or FPGAs in these

devices. It allows both devices working concurrently on the

same workload, improving the overall system resources by

employing both CPU threads and GPU or FPGA concurrency,

thereby achieving higher performance. Second, non-uniform

data partitioning is essential, which is a strategy that disjoint

devices perform the same task on different subsets of the data.
From our experimental results, we make two major ob-

servations. First, as expected, it appears that each device

is suitable or specialized for a specific kind of workload.

That is, the performance of each computational kernel over

a specific device depends on its workload. If the kernel is

memory-bound, performance may be better if more workload

is assigned to the CPU. On the other hand, if the kernel is

CPU-bound assigning more workload to the GPU or FPGA

may improve the overall performance. Second, choosing the

optimal partitioning is one of the main challenges. Partitioning

can be static, which a fixed fraction of workload is assigned

to each device before execution, and dynamic that workload

partitioning is defined at runtime.

Table IV summarizes the performance improvement of each

LBM kernel on both SoC devices. The performance gain

is calculated over the best individually performance which

was GPU and FPGA for AMD Kaveri and Intel Arria 10,

respectively. INITIALIZE and BOUNCEBACK performed better

in GPU only executions. REDISTRIBUTE and RELAXATION

performed better with a data partitioning of 16 × 80 in both

CPU-GPU and CPU-FPGA. These kernels are more suitable

to GPU and FPGA devices than CPU with a performance

improvement of 17.09% in CPU-GPU and 15.85% in CPU-

FPGA. PROPAGATE kernel, nonetheless, performed better for

48×48 and 32×64 data partitioning. It means that this kernel is

suitable to both devices, having almost the same performance

is both CPU-GPU and CPU-FPGA.

VII. CONCLUSION

In this work, we analyzed the performance impact of col-

laborative execution on two low-power heterogeneous archi-

tectures: an AMD Kaveri SoC with CPU x86-64 and Radeon

R7 GPU devices integrated into a single chip, and an Intel

Arria 10 SoC with ARM CPU devices and an integrated FPGA

on a single chip. Our case of study was the D3Q19 Lattice

Boltzmann Method application with five distinct kernels. We

performed experiments with individual executions, CPU only,

and GPU/FPGA only, and in a collaborative way through data

decomposition of the data domain. Our experimental results

suggest that collaborative processing reduces execution times

and that non-uniform domain decomposition improves the

kernel’s performance by 11.39% and 15.15% on AMD Kaveri

and Intel Arria 10, respectively.

Future works include an energy consumption analysis of

our collaborative partitioning; the design of experiments us-

ing kernels from different applications; and the impact of a

dynamic partitioning strategy on heterogeneous architectures.
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