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Abstract—The race for Exascale computing has naturally led
the current technologies to converge to multi-CPU/multi-GPU
computers, based on thousands of CPUs and GPUs intercon-
nected by PCI-Express buses or interconnection networks. To
exploit this high computing power, programmers have to solve
the issue of scheduling parallel programs on hybrid architectures.
And, since the performance of a GPU increases at a much faster
rate than the throughput of a PCI bus, data transfers must be
managed efficiently by the scheduler.

This paper targets multi-GPU compute nodes, where several
GPUs are connected to the same machine. To overcome the data
transfer limitations on such platforms, the available softwares
compute, usually before the execution, a mapping of the tasks
that respects their dependencies and minimizes the global data
transfers. Such an approach is too rigid and it cannot adapt
the execution to possible variations of the system or to the
application’s load.

We propose a solution that is orthogonal to the above men-
tioned: extensions of the XKaapi software stack that enable
to exploit full performance of a multi-GPUs system through
asynchronous GPU tasks. XKaapi schedules tasks by using a
standard Work Stealing algorithm and the runtime efficiently
exploits concurrent GPU operations. The runtime extensions
make it possible to overlap the data transfers and the task
executions on current generation of GPUs. We demonstrate that
the overlapping capability is at least as important as computing
a scheduling decision to reduce completion time of a parallel
program.

Our experiments on two dense linear algebra problems (Matrix
Product and Cholesky factorization) show that our solution is
highly competitive with other softwares based on static schedul-
ing. Moreover, we are able to sustain the peak performance
(≈ 310 GFlop/s) on DGEMM, even for matrices that cannot
be stored entirely in one GPU memory. With eight GPUs, we
archive a speed-up of 6.74 with respect to single-GPU. The
performance of our Cholesky factorization, with more complex
dependencies between tasks, outperforms the state of the art
single-GPU MAGMA code.

I. INTRODUCTION

Current processors are homogeneous chips containing many

cores, whose number will increase again in the near future.

The architectural trend is the emergence of hybrid systems

with many tightly coupled processing units (PU) such as GPUs

or accelerators (old Cell BE/Intel MIC) for high performance

computing. During the last year, the number of GPU-based

computers in the Top500 list has increased from 3.8% to 11%
(from June, 2011 to June, 2012).

Such architectures have heterogeneous PUs in terms of

computing power and programming model. The programmer

is in charge of execution flow and memory consistency. Hence,

in many cases, familiar algorithms need to be redesigned.

Algorithms in dense linear algebra, such as those found in

the LAPACK library, and especially matrix factorizations, have

already been redesigned to exploit multicore machines. The

FLAME [1] and PLASMA [2] projects have demonstrated how

much more interesting it is to exploit parallelism among the

BLAS operations, than inside a given BLAS operation itself.

These new algorithms are built on a software stack that allows

to describe tasks with dependencies and to schedule them at

runtime on multicore.

With hybrid architectures, this software has been extended

to develop hybrid algorithms with multiple task implementa-

tions optimized for each kind of PU. MAGMA [3] allows to

exploit one GPU; MAGMA/StarPU [4] reports experiments

up to four GPUs; FLAME [1] also shows experiments on four

GPUs. The first main difference with previous homogeneous

architecture is that heterogeneous machine has non-uniform

processing power elements. The scheduling theory community

considers a heterogeneous machine as an unrelated machine
where scheduling a task graph to minimize the makespan is

a well-known NP hard problem. The second difference is

that a heterogeneous architecture introduces a new memory

level (on the accelerator), which is non cache-coherent with

the main memory. Moreover, the bandwidth of PCI-Express

interconnect between the host and the accelerator memory

remains low, about 8 GB/s on PCIe x16, vs. the 32 GB/s

between a CPU core and the main memory.

To reach high performance, it is essential to reduce the

time required to transfer data. A good schedule may take

the right decision to map a task onto a GPU resource which

already stores data to be reused. A good runtime may also

try to exploit the high capability to overlap communication

with computation on the modern GPUs. There are many

publications that report experiments on multi-GPU systems on

some linear algebra factorization algorithms [3], [4], [5]. The

authors report higher performance by computing at runtime a

static schedule of the task graph coupled with overlapping

strategy during execution. Such performances come at the

expense of being able to compute cost models of the task

graph and of data transfers.

Nevertheless, if the communication cost can be entirely

overlapped, then classical dynamic work stealing [6] with the-

2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing

1550-6533/12 $26.00 © 2012 IEEE

DOI 10.1109/SBAC-PAD.2012.28

75

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA MARIA. Downloaded on October 26,2023 at 18:02:54 UTC from IEEE Xplore.  Restrictions apply. 



oretical performance guarantee should be almost as efficient,

without requiring cost models anymore, and it can react well

to inactivity due to system or application load variations.

This paper presents extensions of the XKaapi runtime that

enable to exploit the full performance of multi-GPU systems

by using a standard work stealing algorithm. We compare

our design decisions with StarPU [7], that computes a static

schedule of the task graph using an ingenious automatic tool

to build cost models.

Our main contribution is to demonstrate that, on current

GPUs, the overlapping capability is at least as important as

computing a good scheduling decision to reduce the comple-

tion time of a parallel program. Moreover, because XKaapi

uses an online scheduling algorithm, it can be performant for

a wide range of applications, including those irregular, when

the cost of the tasks depends of their input.

First, we evaluate raw performances on matrix product

(DGEMM) and Cholesky factorization for single-GPU systems.

Second, we study the scalability of our implementation on

up to 8 GPUs, and compare it with state-of-the-art libraries.

Finally, we complete our initial experiments with various grain

and problem sizes, and with the volume of data transfers, in

order to estimate the limitation of pure work stealing for multi-

GPUs. Our experiments show that we are able to sustain the

peak performance on DGEMM, even for matrices bigger than the

GPU memory, with a 6.74 speed-up on 8 GPUs (relatively to

1 GPU), which is better than the other tools. For the Cholesky

factorization, our XKaapi version outperforms the state of

the art MAGMA single-GPU code; it suffers from the same

scalability limitations as StarPU on multi-GPUs.

The remainder of this paper is organized as follows: in

Sections II and III we describe the XKaapi programming

model and the designed runtime extensions to support multi-

GPUs. We discuss our performance results in Section IV. In

Section V we present related works on runtime tools for GPUs

and linear algebra (LA) libraries. We conclude and present

future works in Section VI.

II. DATA FLOW TASK PROGRAMMING WITH XKAAPI

The XKaapi1 task model [8], as in Cilk [6], Intel TBB [9],

OpenMP-3.0 [10] or StarSs [11], [12], enables non-blocking

task creation: the caller creates the task and continues the

program execution. The semantic remains sequential like

in XKaapi’s predecessor Athapascan [13], but the runtime

has been redesigned [8] and then specialized for multi-

CPUs/multi-GPUs iterative applications [14]. Here we present

the extension of our previous work on multi-CPUs to a general

scheduling algorithm on multi-GPUs.

A. Design Choices

More than a runtime, XKaapi is a fully featured software

stack to program hybrid parallel architectures. The core stack

is written in C and was designed using a bottom up approach:

each layer is kept as specialized as possible to fit a specific

1http://kaapi.gforge.inria.fr

need. Currently, the stack includes: a runtime supporting

multicores and multiprocessors; a set of ABIs (QUARK [15],

OpenMP runtime libGOMP [16]); a set of high level APIs

(C, Fortran and C++); and a source to source compiler [17]

based on the ROSE compiler framework. Only the C++ API

currently supports multi-CPUs/multi-GPUs applications, and

we will use it in the code fragments of this paper.

B. Data Flow Task Model

A XKaapi program is composed of sequential code and

some annotations or runtime calls to create tasks. The par-

allelism in XKaapi is explicit, while the detection of syn-

chronizations is implicit [8]: the dependencies between tasks

and the memory transfers are automatically managed by the

runtime.

A task is a function call that returns no value except through

the shared memory and the list of its effective parameters.

Depending of the APIs, tasks are created using code an-

notation (#pragma kaapi task directive) if the XKaapi

compiler [17] is used, or by library function (kaapic_spawn
call using XKaapi’s C API, or by calling the template function

ka::Spawn), or by low level runtime function calls.

Tasks share data if they have access to the same memory

region. A memory region is defined as a set of addresses in

the process virtual address space. This set has the shape of a

multidimensional array. The user is responsible for indicating

the mode each task uses to access memory: the main access

modes are read, write, reduction or exclusive [13], [8], [17].

When required ([8]), the runtime computes true dependencies

(Read after Write dependencies) between tasks thanks to the

access modes. At the expense of memory copy, the scheduler

may solve false dependencies through variable renaming.

A thread creates tasks and pushes them on its own work

queue. The work queue is represented as a stack. The enqueue

operation is very fast, typically about ten cycles on the last

x86/64 processors. As for Cilk, a running XKaapi task can

create child tasks, which is not the case for the other data

flow programming softwares previously mentioned [15], [12],

[7], except the recent StarSs extension OmpSs [11]. Once a

task ends, the runtime executes its children following a First-

in First-out (FIFO) order. During task execution, if a thread

finds a stolen task, it suspends its execution and switches to the

work stealing scheduler that waits for dependencies to be met

before resuming the task. Otherwise, and because sequential

execution is a valid order of execution [13], [8], tasks are

performed in FIFO order without computation of data flow

dependencies.

C. Blocked Linear Algebra Algorithms with XKaapi

Previous works have shown that fine granularity and asyn-

chronism are keys to unfold parallelism on hybrid architec-

tures [2], [3]. The “hybridization” strategy for linear algebra

algorithms decomposes factorizations in a collection of BLAS-

based fine-grained tasks with dependencies among them. The

tasks can then be properly scheduled on the available re-

sources.

76

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA MARIA. Downloaded on October 26,2023 at 18:02:54 UTC from IEEE Xplore.  Restrictions apply. 



for ( k=0; k < N; k+= blocsize ){
ka :: Spawn<TaskPOTRF>()( A(rk,rk) );

for ( m=k+blocsize; m < N; m+= blocsize)

ka :: Spawn<TaskTRSM>()( A(rk,rk), A(rm,rk) );

for ( m=k+blocsize; m < N; m+= blocsize){
ka :: Spawn<TaskSYRK>()( A(rm,rk), A(rm,rm) );

for ( n=k+blocsize; n < m; n+= blocsize )

ka :: Spawn<TaskGEMM>()( A(rm,rk), A(rn,rk),

A(rm,rn) );

}
}

Fig. 1. Example of a XKaapi C++ Cholesky factorization.

The code fragment of Figure 1 illustrates how to pro-

gram a Cholesky factorization using the C++ API. The

ka::Spawn<Task> creates a task of type Task. Each

parameter rk,rm,rn corresponds to a range of indexes and

a construction such as A(rm,rk) represents the sub-matrix

of elements A(i,j) where i,j are in the range rm,rk.

Let us note that a sub-matrix does not need to be contigu-

ous in memory as with OmpSs [11]. It allows faster code

parallelization, even if better performance may be obtained

at the cost of converting row major or column major matrix

representation to block representation.

D. Versioning Task Implementations

Extensions to the C++ interface provide a high level in-

terface for multi-versioning a task implementation [14]. First,

a task is associated with a signature that includes the task

parameters and their access mode (read R and/or write W and/or

concurrent write CW). Each CPU or GPU implementation

is encapsulated in a functor object, which must respect its

task signature. This concept of multi-versioning and task

implementation allows a clear separation between the task

definition and its implementations. StarPU uses a similar

approach called codelet [7]. Thus, architecture details are

abstracted from the algorithm. Moreover, the signature allows

the runtime to automatically take care of memory transfers in

case of distributed memory. The application programmer does

not need to code any explicit memory transfer. Figure 2 shows

an example of a task with CPU (TaskBodyCPU) and GPU

(TaskBodyGPU) implementations conforming to its Signature.

The runtime expects at least one implementation of a task

signature.

III. XKAAPI RUNTIME SUPPORT TO MULTI-GPUS

The XKaapi runtime extensions implement a programming

model that offers asynchronous execution of GPU tasks and

abstracts memory details. Algorithms on top of XKaapi de-

scribe the execution flow through the task dependencies and

the runtime decides the target resource (CPU or GPU) and

performs memory transfers as necessary. Our current version

supports NVIDIA CUDA and it relies on the features of recent

Fermi GPUs. This section describes the features to support

/∗ Signature defines task parameters ∗/
struct TaskSYRK: public ka::Task<2>::Signature<

ka :: R<ka::range2d<double> >,

ka :: RW<ka::range2d<double> >{};

template<> struct TaskBodyCPU<TaskSYRK>{
void operator ( ka :: range2d r<double> A,

ka :: range2d rw<double> C )

{ /∗ CPU implementation ∗/ }
};

template<> struct TaskBodyGPU<TaskSYRK>{
void operator ( ka :: gpuStream stream,

ka :: range2d r<double> A,

ka :: range2d rw<double> C )

{ /∗ GPU implementation ∗/ }
};
Fig. 2. Example of a XKaapi C++ program for hybrid architectures. It shows
a task Signature with its parameters and access modes, as well as CPU and
GPU implementations.

multi-GPUs in XKaapi through scheduling, concurrent GPU

operations and memory abstraction.

A. Work Stealing Scheduling Algorithm

The XKaapi version for multicore architectures implements

a list scheduling algorithm based on Cilk’s Work Stealing and

has specific optimizations for fine-grained parallel algorithms,

which have been sketched in section II-B. For each used GPU,

the runtime launches a thread on the host machine that runs a

modified work stealing algorithm.

For each task executed on a GPU, the runtime first transfers

the input data and allocates memory on the GPU for the

output. The runtime assumes that the GPU task implementa-

tion launches the GPU kernels asynchronously. Data transfers

and kernel launch on GPU are handled asynchronously by an

extension of CUDA streams described in the next section.

In comparison with original multi-CPUs work stealing,

multi-GPUs work stealing adds a new state in the task state

diagram that corresponds to a task for which input data are

under transfer. The GPU thread polls regularly the completion

of previous asynchronous GPU operations.

A task that completes its execution, when the asynchronous

kernel launch has completed, activates the successor tasks

(according to the data flow dependencies) that become ready.

These new ready tasks are pushed on the tasks’ queue attached

to the current GPU and they may be stolen by one CPU or

another GPU.

B. Concurrent Operations between CPU and GPU

Recent GPUs such as NVIDIA’s Fermi allow new tech-

niques to explore asynchronism in multi-GPU systems. Fermi

GPUs have one execution engine and two copy engines ca-

pable of concurrent execution and transfers (two-way host-to-

device and device-to-host), under the condition that no explicit

nor implicit synchronization occurs. This section details how

we exploit these capabilities.
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XKaapi has an execution strategy for GPUs that avoids

CUDA’s implicit synchronizations and exploits concurrent

memory transfers in the two ways along with kernel execution.

It splits the execution of a GPU task in three basic operations:

host-to-device input transfers (H2D), TaskBodyGPU execution

(i.e. launch of CUDA kernels) (K), and device-to-host output

transfers (D2H). Write-only parameters are directly allocated

before launching CUDA kernel.

Since concurrency between data transfers and kernel

launches must use CUDA streams, we define a new data

structure, called kstream, that groups together three types of

CUDA streams: a stream for host-to-device transfer, a stream

for kernel execution and a stream for device-to-host transfer.

The kstream structure allows to insert a request for one of the

three types it handles (H2D, K, or D2H). A callback function

and its argument can be specified for each request insertion.

Moreover, after each request insertion, the kstream inserts a

CUDA event to detect the completion of the asynchronous

operation. Once the kstream detects the event completion, it

calls the callback function with its argument as parameter. It

is the responsibility of the client of the kstream structure to

regularly poll for the completion of asynchronous requests by

calling a specific function.

Figure 3 illustrates the way our kstream structure allows to

pipeline concurrent operations on a Fermi GPU.
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Fig. 3. Sequential and concurrent operations in a Fermi GPU card. Fermi
GPUs have two copy engines and one execution engine capable of concurrent
transfer operations (host-to-device and device-to-host) and kernel execution.

This design allows concurrent execution between CUDA

streams of each type. The kstream represents three flows of

FIFO ordered GPU operations whose execution are indepen-

dent from each other. The FIFO order is only respected among

operations of the same type (H2D, K or D2H). The callback

mechanism permits to compose a sequence of operations and

it is typically used by the GPU work stealing algorithm, first

to insert data transfers for the input of a task, and then to

invoke the kernel launch when the transfer ends.

C. Memory Management

In order to enable asynchronous memory transfers with

CUDA, all the user data must register to XKaapi’s runtime.

XKaapi manages GPU memory through a software cache,

based on the Least Recently Used (LRU) replacement policy.

Each GPU thread maintains two FIFO queues in order to keep

track of allocated blocks. One queue stores blocks in read-only

(RO) mode and the other stores blocks in read-write (RW),

write-only (WO) modes or concurrent write (CW) modes.

The first positions of the RO and RW/WO queues contain

the blocks more recently accessed, and the last positions the

blocks less recently accessed. When a GPU task requires

to access a host memory block that is not present on the

GPU, the runtime will allocate memory and insert it in one

of the two queues, based on its access mode, after it has

initiated the data transfer (for data in read access mode). If

the GPU memory is full, it verifies first at the end of the

RO queue and, then, into the RW/WO queue, respectively, if

a memory block bigger or equal than the requested size is

not accessed anymore. If possible, unused blocks are reused

without being freed. Otherwise, it may free blocks from RO

and RW/WO/CW queues as needed. This optimization avoids

unnecessary CUDA calls. Furthermore, the use of two queues

(RO and RW/WO/CW) ensures that data produced by one task

in RW/WO/CW mode remains on the GPU if RO data can be

reclaimed.

Consistency is guaranteed by a lazy strategy using a write-

back policy. Data transfers to or from GPU occur only when a

task accesses data and when the data is in an invalid state in the

target address space. This policy avoids unnecessary transfers,

unlike write-through policy. All transfer operations are asyn-

chronous and rely on the use of our kstream data structure

to signal the completion of operations. In the case of GPU-

to-GPU transfers, the runtime first performs a transfer device-

to-host from a GPU with a valid copy, followed by a host-to-

device transfer to the GPU that owns the task. Since its version

4.1, CUDA includes transfers between two GPUs directly

by DMA called Peer-to-Peer Device Access. This feature is

available when the function cudaDeviceCanAccessPeer
returns true. The current version of XKaapi does not make

use of this feature, because of its unpredictable behaviour

concerning the GPU copy engines: with it, we could not

guarantee the coherence of concurrent data copies, nor their

overlapping with a kernel execution.

IV. EXPERIMENTS

The experiments of this section show respectively: XKaapi’s

ability to overlap the communication with tasks; a comparison

of XKaapi’s performance with state-of-the art tools, and on

Multi-GPUs platforms; an analysis of the granularity and its

impact on the performance with XKaapi; and, finally, how

XKaapi uses efficient data transfers.

All experiments have been conducted on an hybrid, multi-

GPUs system, which is named “Idgraf“. Idgraf is composed

of two six-core Intel Xeon X5650 CPUs (12 CPU cores total)

running at 2.66 GHz with 72 GB of memory. It is enhanced

with eight NVIDIA Tesla C2050 GPUs (Fermi architecture)

of 448 GPU cores running at 1.15 GHz each (2688 GPU cores

total) with 3 GB GDDR5 per GPU (18 GB total). Figure 4

illustrates the hardware topology of Idgraf.

All experiments using up to 4 GPUs always run on GPUs

that do not share any PEX 8647 multiplexer in order to

reserve the full PCIe 16x bandwidth for each pair GPU/CPU.

Experiments using more than 4 GPUs lead to having some
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Fig. 4. Idgraf hardware topology with two six-core CPUs and eight GPUs.
Here the Tylesburg-36D is a QPI-PCIe bridge and the PXE8647 is a PCIe
switch for two GPUs.

pairs of GPUs share the PCIe 16x between the Tylersburg

chip and the PEX multiplexer.

Our experiments use the dense linear algebra problems

Matrix Product (DGEMM doing C ← C + AB) and Cholesky

Factorization, as PLASMA [2] (the same algorithms have been

implemented in XKaapi). As in [4], we consider the peak

performance from DGEMM (from CUBLAS) as an upper bound

on the actual performance in double precision (DP) that one

may obtain with GPUs. We used as software environment the

compiler GCC 4.4 and CUDA 4.1, and the library ATLAS

3.9.39 for the CPU versions of BLAS and LAPACK. We also

used MAGMA 1.1.0 for linear algebra algorithms and StarPU

1.0.1 (with its HEFT scheduling algorithm) as performance

references. Each result is a mean of 30 executions, which is

enough for StarPU to calibrate its internal cost model. The

standard deviation is represented on the graphs.

A. Overlapping Data Transfers with GPU Kernel Executions

This section presents experiments to evaluate the capacity

of our design to exploit asynchronous data transfers in concur-

rence with GPU kernel executions. Our experiment measures

the runtime of a block matrix product algorithm. Matrices

A and B are decomposed into k × k blocks of size s × s.

We devised our implementation such that all the computations

are performed on the GPU. Matrix computation is done with

double precision, each block-matrix product launches CUDA

kernels using the CUBLAS DGEMM routine.

We compare the performances of our XKaapi implemen-

tation with the performances obtained by native calls to

CUBLAS DGEMM on the whole ks× ks matrices, taking into

account the time to copy the matrices to/from the device or

not.

Figure 5 illustrates the results of DGEMM with XKaapi; with

CUBLAS when the time to copy the matrices is not accounted

for (label CUBLAS (no copy)), that measures the GPU peak

performance; and with CUBLAS with copy time included.

Each measure of the XKaapi runtime includes all the costs

of CUDA memory allocations and data transfers. XKaapi ex-

periments always take into account all data transfers, including

those required to get final results in main memory.
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Fig. 5. Performance results from DGEMM on Idgraf for single CPU and
single GPU and different block sizes.

First, the peak performance from CUBLAS nocopy is about

315 GFlop/s for square matrices of dimension 4096. Then, the

performance decreases to 293 GFlop/s for bigger matrices.

Our XKaapi version, with blocks of size 1024 and 2048,

reaches the GPU peak performance except for small matrices.

For matrices bigger than 8192 XKaapi’s implementation sus-

tains 309 GFlop/s with block of size 2048, which is more than

the GPU peak DGEMM from CUBLAS (293 GFlop/s). This

algorithm with block size of about 1024 generates numerous

tasks that can be exploited by our runtime to pipeline and over-

lap data transfers with computation. Our good performances

confirm that we are able to overlap a very high percent of the

data transfers with GPU kernel.

Moreover, thanks to the XKaapi software cache and to our

design to exploit concurrent GPU operations, our blocked

DGEMM algorithm sustains its 309 GFlop/s performance peak

even after the GPU runs out of memory with matrix orders

larger than 10240, which requires ≈ 2.4 GB of device memory

out of 3 GB on Tesla C2050 cards.

For small matrices, because the number of tasks remains

low, the data transfer is not entirely overlapped by compu-

tation. Even in this case, XKaapi presents good results. For

instance, the performance of CUBLAS nocopy with matrices

of size 2048 is about 312 GFlop/s. Performance drops to

152 GFlop/s if we take into account the data transfers. Our

XKaapi DGEMM for this matrix dimension and with block size

of 1024 generates 8 tasks for each sub-matrix product, and it

reaches 240 GFlop/s, that correspond to 157% of improvement

over CUBLAS when data transfers are taken into account.

B. Surpassing CUBLAS GPU Peak

A deeper look on the results presented in Figure 5 shows an

interesting phenomenon. For matrix dimension 4096×4096 us-

ing block size 512, our blocked DGEMM reaches 247.5GFlop/s.

For bigger matrix dimension, using the same block size,

the performance increases up to 271GFlop/s. However, a

simple analysis shows that our blocked DGEMM algorithm

performance should be upper bounded by CUBLAS DGEMM,

since our implementation only calls it to compute each of its

blocks. Besides, the same figure shows that the performance of

CUBLAS DGEMM, without taking into account data transfers,
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is 233 GFlop/s for a 512 × 512 matrix. Thus, the XKaapi

version increases the performance by 16%.

We are not certain about the actual factor that improves

the performance on the Fermi GPUs. One hypothesis is that

the gain is explained by better GPU occupancy, or specific

CUDA optimizations for small matrices, which includes new

CUBLAS batched *GEMM routines since version 4.1.

C. Cholesky Single-CPU/Single-GPU

Figure 6 reports our results using one CPU and one GPU for

Cholesky factorization. We compare our work stealing based

runtime XKaapi to StarPU [7] and single-GPU MAGMA [3].

StarPU [7] schedules at runtime the entire task graph using

the HEFT static scheduling algorithm. In XKaapi and StarPU,

the Cholesky factorization of the diagonal block is sequential

and executed on the CPU. The MAGMA version uses a more

sophisticated implementation where part of the diagonal block

factorization is exported on the GPU.

��

���

����

����

����

����

�� ����� ����� ������ ������ ������

�

��

��

������������

�����
����	
������
�����
������������
�����

Fig. 6. Cholesky performance results on Idgraf for single-CPU and single-
GPU with block size 1024× 1024.

XKaapi and StarPU, with runtime scheduling decisions,

outperform MAGMA when the matrix dimension is bigger

than 10240. The whole matrix size is 800 MB, and can be

stored into the 3 GB of device memory. Only the last matrix

of dimension 20480 can not be stored into the GPU memory.

The main difference between XKaapi and StarPU vs MAGMA

is that MAGMA is unable to exploit parallelism across the

main iteration (see code fragment of Figure 1), as is done by

XKaapi and StarPU.

For small matrix dimensions (less than 2048), the perfor-

mance of MAGMA and XKaapi are similar, but StarPU seems

to suffer from a higher overhead. XKaapi has a little drop and

then reaches the performances of StarPU.

D. Multi-GPUs Results

For the multi-GPUs evaluation, our experiments measure

the performance of DGEMM and Cholesky using from one to

eight GPUs, with matrix dimension of 16384 and block size of

1024. XKaapi is compared again to StarPU. Figure 7 shows the

performance results for DGEMM. XKaapi outperforms StarPU

in all cases and attains 2023.14 GFlop/s (or speed-up 6.74 on

8 GPUs with respect to single-GPU).

Figure 8 reports the results for the Cholesky factorization.

The algorithm corresponds to the code fragment in Figure 1. In
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Fig. 7. DGEMM performances up to 8 GPUs. The matrix order is 16384
with block size 1024× 1024.

the StarPU and XKaapi programs, all tasks, except the block

factorization TaskPOTRF, are performed by a GPU. Unlike

the DGEMM case, the Cholesky factorization acceleration, up to

eight GPUs, is below the expected: neither XKaapi nor StarPU

implementations do scale. StarPU reaches 680.82 GFlop/s

(or speed-up 2.94 with respect to single-GPU). Experiments

with bigger matrices (up to 20480 × 20480) show the same

behaviors. This means that, when using more that 4 GPUs,

communications costs can not be neglected.
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Fig. 8. Cholesky factorization performances up to 8 GPUs. The matrix
order is 16384 with block size 1024× 1024.

E. Granularity Impact

In this set of experiments we vary the matrix dimension

and the block size for our blocked DGEMM with StarPU and

XKaapi. The results of Figure 9 permit to conclude that our

runtime, with dynamic work stealing scheduler, has a lower

overhead than StarPU. Thus, XKaapi is able to exploit more

performance on DGEMM. The overhead is related to the number

of tasks in the system: for matrix dimensions greater or equal

than 10240 and for block size greater or equal than 1024,

the difference between XKaapi and StarPU remains about the

same in all the cases.

F. Memory Transfers

XKaapi and StarPU allow to monitor the execution by

collecting post-mortem traces of performance counters. We

have collected, for one instance of DGEMM and of the Cholesky
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Fig. 9. Results for DGEMM using 4 GPUs on various grains.

factorization, the total number of bytes exchanged between the

main memory and the GPUs.

Table I shows in GB the total memory transfers with StarPU

and XKaapi on the DGEMM code. The matrix dimension is

16384. Surprisingly, StarPU generates bigger data exchanges

than XKaapi up to 4 GPUs, although it uses an a priori HEFT

algorithm that minimizes data transfers. For a matrix of size S
bytes, if the GPU memory could store the entire data, DGEMM
implies 3×S bytes from host to device transfer and S bytes of

transfer to get back the result. For a DP matrix of dimension

16384 = 214, the data transfer volume is 8 GB. On one GPU,

XKaapi’s schedules order the tasks according to the sequential

order, which is memory efficient. However, StarPU’s schedule

seems to order the execution using a breadth-first strategy,

generating too much parallelism, and thus it increases the

memory consumption of the device. Then, the StarPU software

cache eviction policy generates a lot of traffic that degrades

the performances.

DGEMM transfers (GB)

GPUs 1 2 4 6 8

XKaapi 8.00 10.27 16.49 23.23 29.29
StarPU 22.54 14.97 16.98 20.09 24.35

TABLE I
MEMORY TRANSFERS OF DGEMM IN GIGABYTES WITH MATRIX ORDER

16384 AND BLOCK SIZE 1024× 1024. THE SUM OF INPUT AND OUTPUT

DATA TRANSFERS IS 8 GB.

On the Cholesky factorization, as illustrated in Table II, the

memory transfer generated by XKaapi is larger than StarPU’s.

As with the DGEMM program, the scheduling strategy used

by XKaapi orders the tasks close to the sequential order

of their creation, which generates too much parallelism and

thus too much data consumption from the device. The HEFT

scheduling of StarPU minimizes the makespan and reduces

the memory consumption.

We previously showed that bad scaling of Cholesky fac-

torization exhibited on figure 8 was due to bad overlap of

communication by computation. The table II explains why

XKaapi performs worst than StarPU: it has more data transfers.

Moreover, when using more than 4 GPUs, the architecture

share some PCIe 16x links between GPUs (Figure 4), so

Cholesky transfers (GB)

GPUs 1 2 4 6 8

XKaapi 3.71 7.38 12.28 12.89 14.62
StarPU 2.23 3.81 6.55 7.38 9.00

TABLE II
MEMORY TRANSFERS OF CHOLESKY IN GIGABYTES WITH MATRIX

ORDER 16384 AND BLOCK SIZE 1024× 1024. THE SUM OF INPUT AND

OUTPUT DATA TRANSFERS IS 4 GB.

bottlenecks on data transfers become worst.

Using work stealing directed by data affinity would allow

XKaapi to reach StarPU performances. But the amount of

data transfers would still be a bottleneck. To overcome this

limitation, one would need to use bigger blocks on GPU. Still,

using bigger blocks means that TaskPOTRF would become a

bottleneck as this task is currently run only on CPU. A parallel

implementation, partially on GPU (such as MAGMA), for this

task would then be required.

V. RELATED WORKS

OmpSs [11] is a programming tool that provides a set of

OpenMP-like pragmas and a runtime system to schedule tasks

while preserving dependencies. It offers different scheduling

strategies and coherence protocols such as write-back and

write-through. To our knowledge, OmpSs has concurrent ex-

ecution and data transfers in GPUs but it shows some issues

with matrix sizes that can not be entirely stored into the GPU

memory. It also performs asynchronous operations in GPUs by

pinned-memory buffers, which adds additional memory copies

and transfer overheads. Moreover, as shown in [11], perfor-

mance on multi-GPU systems remain difficult to compare

with our results: the public downloaded version seems to have

some problems on multi-GPUs and the performances reported

in the paper achieve about 400 GFlop/s on single precision

matrix product while we measured about 625 GFlop/s for the

same problem size on similar Fermi GPU processor. The cited

CUDA 3.2 version used by the authors is too old for correct

comparisons.

StarPU is a runtime system for scheduling a DAG of tasks

on hybrid systems optimized for numerical algorithms [7]. In a

similar way, StarPU provides a programming model for hybrid

architectures and exposes an API to describe a scheduling

policy which allows flexibility in work distribution. Recently

StarPU has supported concurrent write (CW) access of task

parameters. It has similar features to XKaapi but StarPU lacks

of concurrent operations on GPUs. It uses data prefetch to

predict memory transfers before task execution and provides

a lazy coherence protocol. However, according to StarPU

examples, each GPU task needs a synchronization at the end to

ensure all kernels are finished. It forces a synchronization point

in the GPU copy engines and does not allow concurrent GPU

operations. This issue could not be significant in earlier GPU

families, but it is crucial on Fermi GPUs. Besides, its scheduler

uses the static HEFT algorithm to schedule the entire DAG

thanks to cost models for data transfer and task executions.

Such an approach does not allow to react to system load or

task execution variations as our work stealing algorithm does.
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In the case of linear algebra algorithms, PLASMA [2]

provides fine-grained parallel linear algebra routines with

dynamic scheduling through QUARK, which was conceived

specially for numerical algorithms. FLAME [1] is a high-level

notation to express algorithms for dense linear algebra oper-

ations on multi-CPUs/multi-GPUs. MAGMA [4] implements

static linear algebra algorithms for hybrids systems composed

of GPUs. Recently it has included some methods with dynamic

scheduling in multi-CPUs and multi-GPUs on top of QUARK

or StarPU, in addition to static multi-GPUs version. NVIDIA

CUDA Toolkit provides some BLAS routines with CUBLAS

[18].

VI. CONCLUSION

We have presented extensions of the XKaapi runtime sys-

tem to program multi-GPU architectures. The current version

provides work stealing that efficiently exploit concurrent GPU

operations. Our experimental results have been obtained on

blocked matrix product (DGEMM) and the Cholesky factoriza-

tion, with an hybrid system composed of eight Fermi-based

NVIDIA GPUs.

Our main contribution is the design of an asynchronous

approach of concurrent GPU operations that achieves an

almost ideal overlapping of data transfer and kernel execution

with DGEMM algorithm for single-GPU. Thanks to this over-

lapping, the use of a pure dynamic work stealing algorithm

permits to reach high performance as the theory predicts for

shared memory machine without communication costs. Thus,

overlapping almost enables to hide the heterogeneity of the

memory accesses on a multi-GPUs system.

Second, our work stealing implementation outperforms in

most cases the static MAGMA approach for Cholesky fac-

torization on single-GPU and the static HEFT scheduler from

StarPU. We obtained significant performance results with both

XKaapi and StarPU for the Cholesky implementation. But, our

scheduling strategy makes decisions at runtime and does not

rely on any cost model.

Nonetheless, our scheduling strategy based on work stealing

lacks of more sophisticated decisions in order to consider data

locality and processing power of available PUs. In our ex-

periments with blocked Cholesky factorization, StarPU attains

better results for executions with more than 4 GPU because its

scheduling strategy considers communication costs. Coupling

our online scheduling with data locality or communication

information might enable to get a scalable Cholesky imple-

mentation on multi-GPUs.

As future works, we plan to extend XKaapi with an

OpenMP-like interface for GPUs. Also, we will design dy-

namic strategies to take into account the affinity between tasks

and data in order to reduce the data transfers in multi-GPU

executions, as well as new adaptive algorithms using XKaapi

for Cholesky, QR and LU factorizations.
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