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ABSTRACT

DI DOMENICO, Daniel. A Model for Software Measurement Aiming to Guide
Evaluations and Comparisons between Programming Tools to Implement GPU
Applications. Advisor: Gerson Geraldo Homrich Cavalheiro. 2022. 98 f. Thesis (Doc-
torate in Computer Science) – Technology Development Center, Federal University of
Pelotas, Pelotas, 2022.

Programming tools for GPUs are frameworks that offer resources to explore the
massive parallelism power provided by these devices. Nowadays, they are being
extensively applied for HPC purposes. Despite of the existence of many tools that can
be used to encode a GPU program, programming targeting GPUs is still seen as chal-
lenging, requiring the use of specialized frameworks to deal with the heterogeneous
environment demanded by the GPU architecture. Also, there isn’t a well accepted
definition of a standard framework for GPU programming. So, the process to select a
tool in order to implement a GPU program is not simple, specially when this choice
can impact the performance and programming effort required to implement it.

Regarding that, this Thesis proposes a model to guide evaluations and comparisons
between frameworks for GPUs. This model was designed based on the GQM method
for software measurement and, because of that, was formulated using goals, questions
and metrics to analyze three different aspects about the frameworks: programming ex-
pressiveness, programming effort and performance. As a result, the model seeks to
offer a perspective including the characteristics, strengths and weakness about pro-
gramming tools. We have in mind that such perspective can support the process of
choosing a framework to develop a GPU program. Experiments guided by the pro-
posed GQM model were conducted applying the NAS Parallel Benchmarks imple-
mented with CUDA, OpenACC and Python/Numba. The experimental results contem-
plated the three aspects defined in the model, showing the similarities and differences
regarding the tested APIs. Further, these results were employed to compose the per-
spective considering each framework. Due that, we believe this study contributes to
improve the available knowledge about these tools as well as advancing research on
programming tools for GPUs.

Keywords: GPU. Programming tool. Software measurement. CUDA. OpenACC.
Python. NPB.
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1 INTRODUCTION

Heterogeneous computing systems, like multiprocessor processing servers
equipped with GPUs, have been employed as a resource to achieve performance
gains in different research fields (machine learning, bioinformatics, computational fluid
dynamics and others) executing programs in parallel. GPUs, which are seen as the
main heterogeneous device for High Performance Computing (HPC) (BRODTKORB;
HAGEN; SÆTRA, 2013), offer a different platform in comparison with multiproces-
sors based on classic von Neumann architecture, providing an environment where
applications can be performed on a massively-parallelized way. However, this con-
trasting architecture makes GPU programming challenging since it requires additional
expertise to employ specialized programming tools to encode codes capable to explore
them (LIMA et al., 2013; BALDINI; FINK; ALTMAN, 2014; ASTORGA et al., 2017).

Along the years, hardware vendors provided frameworks allowing programmers
to implement codes targeting GPUs, such as CUDA (CUDA C++ PROGRAMMING
GUIDE, 2021) and OpenCL (THE OPENCL SPECIFICATION, 2019). Advances were
also proposed by these vendors intending to offer application programming inter-
faces (APIs) that are similar (OpenACC (OPENACC SPECIFICATION, 2020)) or equal
(OpenMP 4.0 (OPENMP SPECIFICATION, 2020)) to the ones used to program multi-
core CPUs. OpenACC and OpenMP are based on compiling directives and allow the
incremental parallelism, that is, a parallel application can be implemented extending
its sequential version employing annotations in the code. This approach is a com-
mercial success, contributing to make OpenMP the de facto standard API to multicore
platforms. Besides the mentioned commercial GPU programming frameworks, some
academic initiatives also have specified interfaces to heterogeneous environments pro-
viding different abstractions for GPU (e.g. implicit data handling and code portability).
Some examples of them are Kokkos (EDWARDS et al., 2012), SkePU (ENMYREN;
KESSLER, 2010), HPSM (LIMA; DI DOMENICO, 2017), StarPU (AUGONNET et al.,
2011) and OmpSS (SAINZ et al., 2014).

Nowadays, GPUs don’t just play a key role in HPC, but also have being applied
for parallel processing in industries of different fields, as manufacture of equipment,
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telecommunications and artificial intelligence innovations (ANDRADE et al., 2019).
However, the programming tools focusing these devices still needs improvements. A
fact to prove this point is: there isn’t a well accepted definition about the standard
framework targeting GPUs. In comparison, parallel programming for cluster or multi-
processor environments already have their consolidated tools (MPI and OpenMP, re-
spectively). For GPUs, despite of many options available, none of them has a status
like MPI or OpenMP.

Another aspect related to frameworks for GPUs is that most of them, including
CUDA, OpenCL and OpenACC, were released supporting just compiled languages
(such as C/C++ or Fortran) as third-party libraries (HOLM; BRODTKORB; SÆTRA,
2020). Despite of these languages are commonly known for their capacity to deliver
high performance, they usually offer low-level APIs, a fact that can make them hard to
be used. More recently, there were made available some options for GPU programming
supporting high-level languages. One example is the Python language, which offers
environments (like Numba (NUMBA DOCUMENTATION, 2022) and CuPy (CUPY API
REFERENCE, 2022)) and packages (including PyCUDA and PyOpenCL (KLÖCKNER
et al., 2012)) to enable GPU programming. Therefore, high-level programming lan-
guages can also be employed to develop GPU codes.

Considering the available frameworks for GPUs enabling distinct approaches of
APIs for programming and the fact that there isn’t a standard tool to implement GPU
applications, an issue is faced: which framework is the most properly tool to encode
some GPU program? Indeed, this question does not have a simple answer and was
also reported as a trouble by Astorga et al. (2017). Selecting a framework to develop an
application to explore GPUs can impact its performance. Furthermore, each program-
ming interface provides different concepts and resources to implement a source code.
So, those aspects can also influence the required programming effort. Regardless of
many factors that should be considered to take this choice, we suppose that evalu-
ations and comparisons between programming tools could offer a perspective about
them and, with that, assisting this process of decision.

There are in literature some studies that proceeded evaluations and comparisons
between frameworks for GPUs. Most of them focused on executing these comparisons
considering performance and programming effort aspects. However, these works pro-
ceeded analysis regarding programming tools just applying metrics as the approach
to quantify, evaluate and perform comparisons between them. Hence, they did not
follow a model of software measurement with predefined goals, rules and interpreting
mechanisms in order to guide such process. Besides, these studies did not considered
well-known benchmarks for HPC to execute the framework evaluations, since most of
them performed such analysis with some specific applications.
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1.1 Objective

Taking into account the exposed concerning programming tools for GPUs, the Ob-
jective of this Thesis is to propose a model, based on the GQM (Goal, Question, Met-
ric) method for software measurement, to evaluate and compare programming tools for
GPUs. These comparisons aim to provide, considering programming expressiveness,
programming effort and performance aspects, a perspective regarding the characteris-
tics, strengths and weakness about each of the compared frameworks.

To accomplish the objective of this Thesis, we propose to reach the following Spe-
cific Objectives (SO):

SO1: Defining a model with goals, questions and metrics, based on the GQM
method for software measurement, to guide the evaluation of programming tools
for GPUs and, with that, comparing distinct aspects of such frameworks, as pro-
gramming expressiveness, programming effort and performance.

SO2: Implementing versions of a set of GPU applications from a benchmark suit
(NAS Parallel Benchmarks - NPB) employing different programming tools (CUDA,
OpenACC and Python/Numba).

SO3: Proceeding programming expressiveness, programming effort and perfor-
mance experiments guided by the proposed GQM model to collect information
intending to evaluate and compare the frameworks for GPUs.

SO4: Presenting a perspective, based on the results of experiments guided by
the proposed GQM model, regarding the characteristics, strengths and weakness
about each of the evaluated frameworks for GPU programming (CUDA, Open-
ACC and Python/Numba).

1.2 Methodology

The methodology to develop this Thesis addresses the steps to achieve the spe-
cific objectives and, as a consequence of that, to accomplish the main objective of this
study. Firstly, after a bibliography research, we defined which aspects about program-
ming tools for GPUs would be evaluated applying our proposed model for software
measurement. Most of the related studies employed programming effort and perfor-
mance as goals for these analysis. As a complementary aspect, we included program-
ming expressiveness since it can be applied to evaluate the resources of a framework
by itself, that is, such evaluations do not need to be related to implemented applica-
tions.

After defining the aspects of evaluation, we were able to delineate the proposed
model for software measurement based on the GQM method. The proposed GQM
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model intends to describe how these defined aspects would be applied to evaluate and
compare the programming tools for GPUs following the approach of goals, questions
and metrics.

The set of GPU applications that were used during the experiments guided by the
proposed GQM model was assigned at this stage. Previously to the definition of these
programs, we were demanded to determine which frameworks would be employed to
encode them. Among the available options, Andrade et al. (2019) highlighted CUDA as
the most common choice from industrial companies as a programming tool to explore
GPUs, since this framework has official technical support offered by Nvidia. Consider-
ing this fact and the massive application of Nvidia GPUs for HPC, CUDA was chosen
as a tool to be used as a case study on this work. Hence, OpenCL was not selected
once its API offers an approach similar to CUDA.

Having in mind to provide a contrasting point of view, OpenACC was chosen as
a second tool to be compared to CUDA. The compiler directives approach employed
by OpenACC aims to offer an easier programming environment than CUDA, which
requires the specification of several computing details explicitly in the application code.
Also, OpenACC is the most consolidated model based on compiler directives for GPUs
and has official support from Nvidia. OpenMP was also discarded by the same reason
as OpenCL, since it offers a programming approach similar to OpenACC.

As a third framework to be compared to CUDA and OpenACC, we selected the
Numba environment, a tool that enables GPU support in Python. With Numba, a GPU
application can be encoded with pure Python code. The reason for including Python
in this study is offering a counterpoint in relation to low-level compiled languages (like
C/C++) which are required to make use of CUDA and OpenACC. Python is a high-level
language commonly known to offer a great development productivity compared to com-
plied ones, also being easy to learn and use (HOLM; BRODTKORB; SÆTRA, 2020).
Besides, Python have been employed to develop scientific applications (ZIOGAS et al.,
2021). Hence, the use of an API supporting pure Python to encode GPU programs
can be advantageous since an application implemented with sequential Python may
be ported to explore GPU devices without changing the programming language.

Regarding CUDA, OpenACC and Python/Numba as the programming tools of this
work, we decided to employ the NPB programs in the experiments. NPB is composed
by 5 kernels and 3 applications, totalizing 8 programs representing different domains
of computation. NPB was applied by other works that focused on experiments re-
garding HPC aiming to analyze performance and programming effort aspects, includ-
ing for GPUs. Considering that, there are implementations of NPB for GPUs with
CUDA (ARAUJO et al., 2020), OpenCL (SEO; JO; LEE, 2011), and OpenACC (XU
et al., 2015). This is other factor that contributed for the choice of NPB, since these
third-party codes have also been confirmed and accepted by HPC community. So, we



18

were required to implement the Python/Numba versions of the programs only.
The next stage of this work contemplated the execution of experiments guided by

the proposed GQM model. They were performed using the programming tools (CUDA,
OpenACC and Python/Numba) and the benchmarks developed employing them (NPB
suite). The proposed model evaluates three aspects of a framework: programming
expressiveness, programming effort and performance. Therefore, we achieved results
for each of them. To finish this study, a final analysis regarding the experimental results
was proceeded. Such analysis intended to provide a perspective about each of the
used programming tools considering their characteristics, strengths and weakness.

1.3 Scientific contributions

This Thesis makes the following Scientific Contributions (SC):

SC1: We provide a model for software measurement based on the GQM method
that guides the comparison of programming tools to implement GPU programs
employing different aspects of evaluation: programming expressiveness, pro-
gramming effort and performance.

SC2: We make available the implementations of NPB five kernels and three ap-
plications with Python on serial and GPU (pure Python code applying Numba
environment) versions. These codes are the first implementations of the NPB
programs using Python.

SC3: We proceeded programming expressiveness experiments based on case
studies regarding common GPU routines: Memory Allocation, Memory Trans-
fer: Host to Device, Memory Transfer: Device to Host, Kernel Invocation and
Using of Shared Memory. These experiments evaluated how the ideas can be
represented in a code using a specific programming tool (CUDA, OpenACC and
Python/Numba).

SC4: We performed code comparison using NPB programs intending to evaluate
the programming effort required by each framework for GPU (CUDA, OpenACC
and Python/Numba).

SC5: We executed performance experiments comparing GPU programs (NPB
suit) developed with CUDA, OpenACC and Python/Numba, evaluating the differ-
ences in performance achieved by each framework.

SC6: Based on the experimental results considering programming expressive-
ness, programming effort and performance aspects, we presented a perspective
about each of the evaluated programming tools for GPU (CUDA, OpenACC and
Python/Numba) regarding their characteristics, strengths and weakness.
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1.4 Meet briefly

When scanning this Thesis, the reader is embodied in a research addressing pro-
gramming tools for GPUs. In the text, he or she is going to find information regarding
GPU hardware, as well as details concerning programming tools which can be applied
to explore this sort of device. After that, the reader will meet a contextualization about
software measurement, focusing on topics like the GQM method, programming ex-
pressiveness and programming effort. These concepts were used to propose a GQM
model aiming to guide evaluations and comparisons considering frameworks to explore
GPUs. The goals, questions and metrics of such GQM model are detailed in order to
specify how it was applied. The NPB suit is also illustrated by this study, presenting
a description about each of its kernels and applications. In the sequence, our NPB
implementations with Python and the Numba environment are highlighted, showing
the advantages and limitations of applying Python targeting GPUs. The experiments
are the next topic faced by the reader, when he or she will be aware of program-
ming expressiveness, programming effort and performance results. These results were
achieved guided by the proposed GQM model and employing the NPB benchmarks,
leading us to a discussion where the evaluated frameworks (CUDA, OpenACC and
Python/Numba) were analysed. Finally, the reader faces a perspective about each of
the programming tools for GPUs, being able to better understand their characteristics,
strengths and weakness. Hence, this perspective can be useful to support he/she to
properly select a framework which suits more for some specific scenario or project.
Further, the reader can apply the GQM model proposed by this study to evaluate
other programming tools, also being possible, after understanding which resources
such frameworks fail to provide, to propose improvements or new tool options for GPU
programming.

1.5 Text organization

The remaining of this Thesis is organized as follows:

• Chapter 2 presents concepts about heterogeneous architectures in HPC, focus-
ing on GPU devices and programming tools that can be applied to explore them.

• Chapter 3 addresses the related work considering other studies that proceeded
comparisons between programming tools for GPUs.

• Chapter 4 introduces a context regarding comparisons between frameworks and
applications, detailing programming aspects and the GQM method for software
measurement. Next, it formalizes our proposed model to guide comparisons be-
tween programming tools for GPUs evaluating programming expressiveness, pro-
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gramming effort and performance aspects.

• Chapter 5 describes the applications employed during the experiments of this
Thesis, also detailing the implementations of NPB programs that we proceeded
with Python.

• Chapter 6 presents the experimental results of this Thesis. They were executed
guided by the proposed GQM model and applied the previously defined programs
(NPB suite) and programming tools (CUDA, OpenACC and Python/Numba). After
the evaluation of the proposed aspects about frameworks for GPUs, a discussion
and final analysis details a perspective about each of them.

• Chapter 7 completes this work, presenting final remarks related to this Thesis
and enumerating future works.



2 HETEROGENEOUS ARCHITECTURES AND GPUS

Parallel processing is a way that can be used to fulfill the increasing demand for
more computational performance. This approach has been employed along the years
through clusters executing the same job over many machines (such as supercomputers
or mainframes). However, the parallel processing has gained more emphasis since
2004, when, due to problems related to heat dissipation, the new transistors available
for CPU chips were used by hardware vendors to add more than one processing core in
a single chip (ESMAEILZADEH et al., 2013). This breakthrough started a multicore era,
considerably changing the way regular and mainly HPC applications are implemented,
since they had to be adapted to explore the parallelism available on processors.

Despite the high performance that can be achieved by parallel applications running
on multicore CPUs, the requirement for improvements in computing, specially in HPC
field, is constant. Regarding that, in last decade new devices with different architec-
tures have begun to be employed to execute parallel programs. These devices can
be classified as heterogeneous architectures, and as faced by multicore ones, require
parallel processing to deliver performance gains.

Heterogeneous architectures, also called accelerators in HPC area, are a sort
of hardware specifically developed to achieve high performance executing parallel
codes (FENG; MANOCHA, 2007). So, these platforms are different from multicore
CPUs which just replicate the cores for serial processing (FENG; MANOCHA, 2007).
Embedded SoC (ARM Mali), Cell/BE, FPGAs boards and manycore architectures
(GPUs and Intel Xeon Phi) are examples of devices that are considered accelera-
tors (BRODTKORB; HAGEN; SÆTRA, 2013; SAINZ et al., 2014).

Nowadays, the trend topic in HPC field are accelerators and heterogeneous com-
puting (LIM; KIM, 2014; MENDONCA et al., 2016). For instance, twelve of the fifteen
first places in 2022 Top 500 supercomputer list1 already explore this sort of devices.
Hence, heterogeneous architectures play a key role in order to, not just improve exe-
cutions from regular and HPC applications, but also in the path to build an exascale
machine (MANN, 2020).

1TOP500 The List: https://www.top500.org/lists/top500/list/2022/06/
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For HPC purposes, GPUs are seen as the main heterogeneous de-
vice (BRODTKORB; HAGEN; SÆTRA, 2013). Considering that and the focus of this
work, the following sections of this Chapter are going to target GPUs, describing details
of this kind of architecture and some programming tools that can be applied to explore
them for parallel processing.

2.1 GPUs

GPU is an architecture originally employed for graphical processing that have
evolved into a general purpose programmable accelerator (MANAVSKI, 2007; KIN-
DRATENKO et al., 2009; BALDINI; FINK; ALTMAN, 2014). When a GPU is employed
to a task different from graphical processing, it can be called GPGPU (General Purpose
GPU). Today, most of GPUs devices, including the ones equipping personal computers,
are able to perform general purpose applications. However, there are GPUs designed
exclusively to this goal that are applied by high investment environments totally focused
in performance.

Regarding GPUs as a general purpose accelerator, it is possible to find a bunch
of works published exploring their high computational power to improve performance.
The main characteristic that make GPUs suitable for HPC is their efficiency for parallel
processing using several threads (FENG; MANOCHA, 2007), additionally to a design
that allows them to perform hundreds of billions of floating point operations per second
on their large bandwidth on-board memory (MANAVSKI, 2007). In general, applica-
tions that have a large degree of data parallelism can properly explore the massive
parallelism offered by GPUs (CARVALHO et al., 2020). Other advantage of applying
GPUs for HPC is their better energy efficiency (performance-per-watt) compared to
CPU devices (ABE et al., 2012; GOWDA; RAMAPRASAD, 2020). This can be seen as
a benefit, since energy issues concentrate big concerns in computing nowadays.

To better understand the advantages related to parallel processing offered by GPUs,
a comparison can be proceeded with CPUs. Basically, GPUs are different from CPUs
in their purpose. A CPU intends to reduce the latency (execution time) on processing
a single instruction, executing it as fast as possible. On the other hand, a GPU aims to
raise the throughput of this processing, that is, it focuses on executing a large number of
instructions at the same time. GPU cores have a lower computational power comparing
to CPU cores, resulting in a higher latency to perform just one command. However, this
latency can be overcome with the throughput (CUDA C++ PROGRAMMING GUIDE,
2021). Accordingly to this scenario, achieving a satisfying performance using GPUs
requires applications able to make use of a great number of threads exploring the
parallel processing (KIRK; HWU, 2013). Otherwise, executing the program on a CPU
or multicore system will probably be faster.



23

In Figure 1, we can see models for CPU and GPU architectures. Each
square/rectangle represents a processing unit, where their sizes are scaled accord-
ingly to their computational power. GPU cores, despite of less power (smaller than
CPU cores), are more and can perform several instruction in parallel (massively paral-
lelism). This makes possible to a GPU achieve a better performance than CPUs.

CPU 
Multicore

GPU
Manycore

Figure 1 – CPU and GPU architecture models (CUDA C++ PROGRAMMING GUIDE,
2021)

As mentioned before, applications can take advantage from the massively paral-
lelism provided by GPUs. For that, the program have to provide a lot of threads to be
performed by the GPU. These great number of threads is necessary because, besides
parallel processing, a GPU can also deliver performance hiding memory latencies with
computation. This is possible since a GPU can automatically switch a thread that are
being executed and needs to fetch data from main GPU memory by another one. How-
ever, to completely hide the memory latency, it is required enough available threads to
be executed (BRODTKORB; HAGEN; SÆTRA, 2013).

As a result from this hiding of memory latencies with computation, a GPU core de-
votes more transistors to data processing, e.g., floating-point computations, what is
beneficial for highly parallel computations. Hence, most part of a GPU core is com-
posed by a arithmetic logic unit. A CPU core, on the other hand, does not provide
this advantage, since it relies on large data caches and complex flow control to avoid
long memory access latencies (CUDA C++ PROGRAMMING GUIDE, 2021). Figure 2
depicts models showing the distinction between a CPU and a GPU core.

Currently, the main vendor of GPU devices for HPC purposes, as well as academic
and industrial environments, is NVIDIA. This company offers hardware and software
(drivers and programming tools) allowing the implementation of general purpose paral-
lel applications to run on their GPUs, providing a complete solution in order to explore
their manufactured devices. By this reason, we chose to focus on NVIDIA GPUs in the
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Figure 2 – CPU and GPU core models (CUDA C++ PROGRAMMING GUIDE, 2021)

following of this work.

2.2 Programming tools to explore GPUs

In a computational system, GPUs role as coprocessors (being CPUs the main pro-
cessing units), working with a private memory space apart from the main memory
node. So, an application is required to manage memory transfers between the main
memory and the GPU memory, once the GPU can only access data allocated in its
own memory space. Furthermore, the architecture of a GPU is different from a CPU,
usually requiring a specific version of code to be explored.

Programming for GPUs is based on an execution model where kernels2 are
launched to be executed on a GPU device. This means that just a few computationally
demanding parts of the application code (the kernels) are performed on GPUs (CAR-
VALHO et al., 2020). The remaining of the source is executed on CPUs, which are
responsible for tasks like starting and finishing the program, managing inputs and out-
puts, as well as launching kernels to the GPUs.

Accordingly to their heterogeneous characteristics, GPUs require specific re-
sources to be properly explored by software (LIMA et al., 2013). To achieve this
demand, some frameworks were developed offering features to support them. This
Section intends to describe some of these programming tools. We addressed the
frameworks considering their importance in HPC area. An aspect that illustrates this is
that such tools are suggested and maintained by hardware vendors, a factor that con-
tributes to their relevancy, even though this fact limits their portability. Also, we regard
the employment of such programming tools on the context of this study.

2A kernel is a GPU program that typically executes in a data-parallel fashion (BRODTKORB; HAGEN;
SÆTRA, 2013)
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2.2.1 CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing platform and
a programming model that aims to explore GPUs manufactured by NVIDIA. This model
allows to implement applications to CPU-GPU environments (SANDERS; KANDROT,
2010). CUDA is considered hard to be used, since several computing details must be
defined explicitly by the programmer. These details, like memory allocations, memory
transfers and configurations of GPU resources employed for processing, are written
employing constructs available in the CUDA library. So, the development of a CUDA
program can be a tough and tedious task (BUENO et al., 2013). Since CUDA was
launched by NVIDIA (2007), new versions were made available. However, they didn’t
bring many improvements related to this aspect. Until this moment, the CUDA API
offers practically the same features as when it was firstly released.

In a nutshell, a CUDA application is almost a C/C++ ordinary code. However, it has
specific sections expressed to control the GPU processing and to be performed on a
NVIDIA GPU device. The code parts delineated to be preformed on the GPU are called
kernels. When processed, a kernel is launched as a task to be executed in parallel by
a GPU accordingly to parameters previously defined in the code (KIRK; HWU, 2013).
Applications developed applying CUDA must be compiled employing a compiler that
supports it. The official NVIDIA compiler to this purpose is called NVCC.

2.2.2 OpenCL

OpenCL, short for Open Computing Language, is a language specification main-
tained by Khronos Group for heterogeneous platforms (independent of manufacturer)
to implement parallel applications focusing on accelerators (like NVIDIA, AMD ou ARM
GPUs), multicore processors and other kind of devices (FGPAs, DSPs...) (WEBER
et al., 2011). Accordingly to Kirk; Hwu (2013), OpenCL provides a programming inter-
face similar to CUDA, but with a greater complexity since it offers portability to different
architectures. The difficult imposed by its API can be seen as a factor to explain why
CUDA is more employed than OpenCL.

OpenCL framework consists of three components that are used as a way to provide
portability. First, the platform layer can be used to gather information about OpenCL-
capable devices. Next, the runtime offers functions for managing device memory, run-
ning kernels (OpenCL parallel code written in C or C++) and transferring data to de-
vices. Finally, the compiler maps abstract kernels onto a device-specific architecture
to be executed. This compiling processes is done during application’s runtime by a
specific compiler (like clcc) (WEBER et al., 2011).
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2.2.3 OpenMP

OpenMP (Open Multi-Processing) is considered de facto standard to develop par-
allel algorithms intended to explore shared memory platforms, like multicore environ-
ments (ADCOCK et al., 2013). An OpenMP application is implemented through com-
piling directives called pragmas, requiring for that a compiler which supports its spec-
ification (DONGARRA et al., 2003). These directives denote to a compiler how the
program can run sections of the application code in parallel.

One of the advantages of using OpenMP, which contributed to its commercial suc-
cess, is the incremental parallelism, that is, a sequential program (written in C, C++ or
Fortran language) can be extended, employing the pragmas, to be executed in a par-
allel way. This approach makes easier applying OpenMP as a parallel model whereas
another paradigms uses the the all-or-nothing conversion of an entire program (CHAP-
MAN; JOST; PAS, 2007).

OpenMP has evolved to keep up-to-date accordingly to the new technologies. The
OpenMP 4.0 has included support to accelerator devices. Some compilers already
offers resources to explore GPUs using OpenMP, such as IBM XL (LI, 2017) and
LLVM/Clang (CLANG 12 DOCUMENTATION, 2021).

2.2.4 OpenACC

Open Accelerators API, also called OpenACC, allows the implementation of appli-
cations focusing on explore accelerator devices. Expressing parallelism with OpenACC
is done employing pragmas (compiler directives) in the same way as OpenMP frame-
work (OPENACC SPECIFICATION, 2020). One motivation that leads to the develop-
ment of OpenACC is to simplify low-level parallel languages such as CUDA (LI et al.,
2016).

Accordingly to Weber et al. (2011), OpenACC was the first initiative that proposes
a standard based on compiler directives to explore accelerators. This fact can be seen
as a change of paradigms, since it made possible to explore an accelerator architec-
ture (like a GPU) just adding annotations on the sequential code. In an OpenACC
program, ordinary tasks that must be handle in the accelerator programming, as data
transfers between memory nodes, kernel implementation, parallelism mapping and
work scheduling, are treated by OpenACC compiler and runtime (KIRK; HWU, 2013).
Comparing with CUDA, the programmer usually only has to express in the code which
loops have to be accelerated and about the involved variables (KUAN et al., 2014).
Thus, the barrier to program heterogeneous platforms was reduced, since, as previ-
ously mentioned, the programmer just have to determine which pieces of code can run
in parallel.
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2.2.5 Python and Numba

Launched in 1994, Python has achieved significant popularity in recent years. This
high-level programming language can significantly increase development productivity
compared to C/C++ and Fortran offering a powerful and easy-to-learn environment
that focuses on readability of code and allows an efficient prototyping of it (HOLM;
BRODTKORB; SÆTRA, 2020). Nowadays, Python is increasing its importance in sci-
entific applications, being applied on many domains such as molecular dynamics, cli-
mate codes and machine learning (ZIOGAS et al., 2021). One of the reasons for that is
the libraries providing a rich set of methods for scientific computing (ODEN, 2020). In
addition, Python offers programming environments (like Numba (NUMBA DOCUMEN-
TATION, 2022) and CuPy (CUPY API REFERENCE, 2022)) and packages (PyCUDA
and PyOpenCL (KLÖCKNER et al., 2012)) to explore GPU devices. Hence, Python
can also be considered as an option to develop applications targeting GPU platforms,
also having an official suggestion3 of NVIDIA for that.

From the listed tools to explore GPUs with Python, Numba is the only one
which supports to implement GPU code (including kernel) with pure Python. Unlike
CuPy, PyCUDA and PyOpenCL, Numba does not require the use of native low-level
CUDA/OpenCL calls specified in C/C++. Numba can be characterized as a just-in-time
compiler and it is recommended for functions that use NumPy (NUMPY DOCUMEN-
TATION, 2022) arrays and loops. A Python function annotated with a Numba decorator
is compiled to machine code before execution. At compile time Numba reads Python
bytecode, loads information about types of the input arguments and optimizes the func-
tion. Next, Numba uses the LLVM compiler library to generate machine code. This pro-
cess allows code execution at native speed on every call (NUMBA DOCUMENTATION,
2022), both for CPU or GPU. Specifically for GPU code, the Numba compiling process
generates PTX instructions to be processed by a CUDA-capable GPU device. Hence,
Numba enable CUDA support to Python.

Numba for GPUs offers a programming model with almost all resources available in
native C++ CUDA but dynamic parallelism and access to texture memory. An applica-
tion is written with Python syntax and must define host and device codes, GPU kernels,
as well as memory transfers. However, Numba also provides automatic data transfers
between CPU and GPU for NumPy arrays. Additionally, several Python constructs,
built-in types, built-in functions, standard library modules and NumPy arrays are sup-
ported and can be used to implement the GPU code (NUMBA DOCUMENTATION,
2022).

3GPU-Accelerated Computing with Python: https://developer.nvidia.com/how-to-cuda-python
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2.2.6 Other tools

Regardless the existence of the programming tools described in the last sections,
there are other frameworks that can be used to explore GPUs. Most of them were de-
veloped by academic researches and commonly offer programming resources in order
to be suitable alternatives to the “official” tools (the ones suggested and maintained by
hardware vendors).

Some examples of these frameworks are StarPU (AUGONNET et al., 2011) and
XKaapi (GAUTIER et al., 2013), which provide as main feature implicit data transfers
between CPU and GPU memory nodes. These transfers are executed automatically
accordingly to a data dependency graph. Kokkos (EDWARDS et al., 2012) is another
API that offers resources to data movement. Despite of not offering implicit data trans-
fers, Kokkos offers abstractions to assist the programmer with this assignment.

Additionally, Kokkos provides code portability and parallel skeletons/patterns, re-
sources that are also available with HPSM (LIMA; DI DOMENICO, 2017) and
SkePU (ENMYREN; KESSLER, 2010). The first feature indicates that the same ver-
sion of a parallel code can perform on both CPU and GPU devices. This may be an
advantage when the application targets both platforms or heterogeneous processing
(CPU+GPU). Parallel skeletons and patterns offer to programmers an easier way to
implement parallel code, a resource that is also enabled by APIs based in compiler
directives (OpenMP and OpenACC).

Regarding these previous described tools, the parallelism for a GPU program must
be delineated using a library. This is the same approach applied by CUDA, OpenCL
and Python/Numba. On the other hand, some tools offer other approaches to describe
the parallelism. PARRAY (CHEN; CUI; MEI, 2012) and PACXX (HAIDL; GORLATCH,
2014) use annotations for compiler transformations. Similar as OpenMP and Open-
ACC, OmpSS (SAINZ et al., 2014) and OMPi (NOAJE; JAILLET; KRAJECKI, 2011)
employ compiler directives as an abstraction to model GPU parallelism.

This study will not apply any of the tools described by this Section in the experi-
ments. Despite that, as we are proposing a model to compare programming tools for
GPUs, future evaluations can be proceeded applying them in order to analyze their
characteristics related to expressiveness, programming effort and performance.

2.3 Chapter overview

This Chapter presented concepts about heterogeneous architectures in comput-
ing, also called accelerators in HPC area. It was detailed their characteristics and
their purposes related to the HPC field. The focus was given to GPUs, once it is the
main heterogeneous device employed for HPC purposes. Hence, the GPU hardware
was described, pointing differences between a CPU and a GPU. By the end, some
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programming tools to explore GPUs were characterized, highlighting the frameworks
suggested and maintained by hardware vendors.



3 RELATED WORK

Some researches were conducted to evaluate and compare different frameworks
to explore GPU devices. These works have different approaches, since they can focus
on the developer’s sight related to some API (how hard/easy to be used or productive
it can be) or they can analyze the potential of some tool to deliver performance.

The following sections of this Chapter present studies that previously proceeded
comparisons between programming tools for GPUs. We limited as scope articles which
applied CUDA, OpenACC or Python for GPUs, once these are the tools we employed
as case studies of this work.

3.1 Studies regarding comparisons of GPU programs imple-
mented with CUDA, OpenACC and Python

Comparisons between CUDA, OpenACC and Python (applied for GPUs) program-
ming models were previously studied and are available in literature. Some works have
made these evaluations over different aspects, such as performance, energy consump-
tion and programming effort. This Section aims to present such studies, detailing which
perspectives were compared and which resources were used to differentiate the pro-
gramming tools.

3.1.1 Description about the studies

The current Topic intends to describe the articles where comparisons between
CUDA, OpenACC and Python implementations were performed.

S01 - Accelerating Phylogenetic Inference on GPUs: an OpenACC and CUDA com-
parison (KUAN et al., 2014)

This manuscript presents comparisons between OpenACC and CUDA implemen-
tations of MrBayes application to execute a phylogenetic inference.1 This kind of pro-

1Phylogenetic inference employs DNA sequences to reconstruct the evolutionary history of species.
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grams have a high computational burden, so GPU processing has been applied to
overcome this issue. After proceeded the OpenACC (version 1.0 with PGI 12.6 com-
piler) and CUDA (version 4.2) implementations, performance comparisons were exe-
cuted on a GPU device (NVIDIA GTX 580) using simulated DNA data sets of various
sizes. The speedups obtained by OpenACC and CUDA versions over the sequential
one have fluctuated accordingly to the inputs, ranging from 2.5 to 9 times. However,
CUDA implementations achieved better performances for all scenarios.

The authors proceeded a second analysis related to the employing of OpenACC as
a framework targeting GPUs. They recommended the use of OpenACC, since it offers
a great potential to tune applications without the huge programming effort required by
CUDA and without adding a high penalty on performance (only 10% of slowdown for
the implemented application). Despite of that, the study does not present a detailed
evaluation quantifying how less programming effort is required by OpenACC.

S02 - A comparison of CUDA and OpenACC: Accelerating the Tsunami Simulation
EasyWave (CHRISTGAU et al., 2014)

This paper presents results for the tsunami simulation EasyWave executed on
GPUs. The authors performed experiments with this application on two NVIDIA GPUS
(Tesla C1060 and Tesla C2075), employing versions developed with CUDA 5.0 (with
optimizations regarding the GPU hardware) and OpenACC (using PGI 13.6 compiler).
Considering the implementation process, an evaluation was proceeded counting the
lines added to the sequential version of the program, which originally has 462 lines.
The OpenACC version required 21 additional lines, while the CUDA one, where opti-
mizations to deal with hardware details of each GPU were implemented, demanded
248 additional lines.

Regarding performance, the optimized CUDA application performed better on both
GPU devices employed by the simulations (just one input size was applied), achieving
speedups of 10.7 times over sequential version. The OpenACC program had a disap-
pointed result, with a maximum speedup of only 2.67 times. The authors also gauged
data from different parts of the application, figuring out that for some routines, the
OpenACC application can perform as fast as the CUDA one. After a deeper analysis,
they assumed that this difference can be a consequence of compiler issues, once the
structure of the functions is very similar and only differs in the memory access pattern.

S03 - An Early Performance Comparison of CUDA and OpenACC (LI; SHIH, 2018)

This article presents a comparison between CUDA and OpenACC applications
focusing just on performance aspects. All experimental results were obtained from ex-
ecutions performed on a NVIDIA Tesla K40c, employing CUDA 7.0 and the PGI 15.4
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compiler for OpenACC. The applications applied for the tests (10 in total) were selected
from the Rodinia suite (8 applications), including also a Jacobi benchmark made avail-
able by NVIDIA and a Matrix Multiplication algorithm developed by the authors. As input
sizes, they employed different values to evaluate the performance impact of changes
in data size.

The results for the selected algorithms showed that OpenACC performance is sim-
ilar to CUDA. However, when different input sizes were applied for each application,
OpenACC versions registered more variations for processing time than CUDA opti-
mized versions. Accordingly to the authors, this means that OpenACC programs are
more sensitive to changes in data size than the equivalent CUDA programs with opti-
mizations. By the end, they concluded that OpenACC is a reliable programming model
and a good alternative to CUDA for accelerator devices.

S04 - Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: programming produc-
tivity, performance, and energy consumption (MEMETI et al., 2017)

This study proceeds a detailed evaluation of frameworks targeting accelerators,
including programming productivity, performance, and energy consumption aspects.
One interesting point in this work is the proposed metric to analyze the programming
productivity. It applied a parallelization effort formula to evaluate the programming tools
(OpenCL, OpenACC, OpenMP, and CUDA) regarding lines of code written during the
implementation of an application.

As parallel applications for the experiments, the work employed algorithms ex-
tracted from SPEC Accel (OpenACC and OpenCL implementations) and Rodinia
(OpenMP, OpenCL and CUDA implementations) benchmark suites. Regardless the
presentation of results that leaded to some observations about the programming mod-
els, none direct comparison was proceeded between CUDA and OpenACC applica-
tions, since the benchmark suites employed does not offer both versions of the same
program.

As presented results, the study claimed that OpenACC and CUDA required less
programming effort than OpenCL (about 6.7 and 2.0 times less on the average, respec-
tively). The same scenario was presented to OpenMP, that demanded on the average
3.6 and 3.1 times less programming effort than OpenCL and CUDA, respectively. Con-
sidering performance and energy consumption behavior, the results varied accordingly
to the application. However, for most of than, OpenCL and CUDA achieved the best
results (better performance and energy efficiency) than OpenACC and OpenMP.

S05 - Comparing Programmer Productivity in OpenACC and CUDA: an Empirical In-
vestigation (LI et al., 2016)
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This paper presents an investigation of programming productivity comparing the
time required to develop GPU applications using OpenACC and CUDA. The evaluation
was based on human subjects, since it measured the time spent for undergraduate-
level and graduate-level students to implement two programs applying both frame-
works.

As results, the authors presented three conclusions. First, the study showed that
OpenACC enables users to finish a parallel solution in a shorter time than CUDA (at
least 37% faster). Second, despite the programming productivity of OpenACC model
was better than CUDA one, CUDA applications achieved, on the average, an execution
time 9 times shorter than OpenACC versions. By the end, the authors also noted that
previous CUDA experience did not affect the amount of work required to implement an
application employing OpenACC.

S06 - CUDA vs OpenACC: Performance Case Studies with Kernel Benchmarks and a
Memory-Bound CFD Application (HOSHINO et al., 2013)

This manuscript intends to compare the performance of two microbenchmarks
(matrix multiplication and 7-point stencil) and one real-world computational fluid dy-
namics (CFD) application implemented with OpenACC and CUDA running on a GPU
device (NVIDIA M2050). The compilations were proceeded with PGI CUDA Fortran
12.10 for CUDA programs. For OpenACC, it were applied 3 different compilers (PGI
12.10, HMPP 3.2.4, and Cray 8.1.0.165) with CUDA 4.1, except for the CFD applica-
tion, where just the PGI tool was used.

The experimental scenarios indicated that OpenACC applications achieved approx-
imately 50% of performance from CUDA versions. The reason pointed by the authors
for such difference was the memory access optimizations proceeded in CUDA codes.
However, the performance can fluctuate accordingly to the selected compiler. Depend-
ing on the chosen tool, the OpenACC version can reach a performance up to 98%
from CUDA one. The authors also presented some numbers related to the lines of
code added for CUDA and OpenACC versions over the base implementations of each
application. The number of lines included in CUDA codes were always greater than the
ones added for OpenACC codes, but it was not proceeded an analysis to quantify or to
interpret this information.

S07 - Evaluating the Performance and Cost of Accelerating Seismic Processing with
CUDA, OpenCL, OpenACC, and OpenMP (GIMENES; PISANI; BORIN, 2018)

This paper presents an evaluation of performance and cost-benefit (in terms of
hardware performance and energy efficiency) using two seismic processing methods
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(Common Midpoint and Common Reflection Surface). For that, the authors imple-
mented parallel applications with both methods employing CUDA, OpenCL, OpenACC,
and OpenMP frameworks aiming to explore CPUs and GPUs. Regarding GPUs, 6
NVIDIA devices (K40, K80, M40, M60, P100, P102) were applied to the experiments,
with CUDA 8.0.61 and PGI compiler as software tools. The authors also used two
different data sets as inputs for the seismic simulations.

Before the experiments intending to evaluate performance, it was depicted some
information about the number of directives and API calls required for each implemen-
tation. This aimed to expose an indication of programming effort demanded by each
programming tool. Accordingly to the displayed data, OpenCL and CUDA implemen-
tations presented numbers about 5.7 and 4.7 times greater than the ones exposed
by OpenACC, respectively. Regarding performance outcomes, CUDA and OpenCL
achieved, in general, similar results. OpenACC underperformed OpenCL and CUDA,
reaching an average slowdown of 9%, with the maximum being 28%. As a conclu-
sion, the authors pointed OpenACC as an interesting approach for the tested seismic
processing methods, since it provides a friendlier API to create GPU-accelerated ap-
plications with less programming effort, as well as a small decrease in performance
when compared to the other two approaches (OpenCL and CUDA).

S08 - GPU Computing with Python: Performance, Energy Efficiency and Usabil-
ity (HOLM; BRODTKORB; SÆTRA, 2020)

This work presented an evaluation considering GPU programs in C++, with CUDA
and OpenCL toolkits, and in Python, with PyCUDA and PyOpenCL packages. The au-
thors, who have an extensively experience working with C++ and Python for GPUs, im-
plemented three benchmarks employing theses tools to compare performance, energy
efficiency and usability. Also, they executed experiments on seven different models of
NVIDIA GPUs.

Regarding performance, the results showed that Python versions are as efficient as
C++ ones in many cases, as well as the energy efficiency is proportionally related to the
improvement of performance. Through the counting of lines of code of a single program
(Mandelbrot set), it was shown that Python implementations are smaller than C++ ones
for both OpenCL and CUDA. Hence, the authors subjectively, as themselves admit,
classified the development time with Python as “faster” and with C++ as “medium”.
Nevertheless, the size reduction with Python is achieved on serial (host) code, once
PyCUDA/PyOpenCL parallel code must be written in native low-level CUDA/OpenCL.
By this reason, the performance results are similar using both tools, since the most
computing processing is achieved by the GPU and the host code does not significantly
affect the final performance. To conclude, the authors claimed that using Python can
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be preferable to C++ and that using CUDA can be preferable to using OpenCL.

S09 - Lessons learned from comparing C-CUDA and Python-Numba for GPU-
Computing (ODEN, 2020)

This paper presented a performance comparison of Numba-CUDA (Python) and
C-CUDA for different kinds of programs, such as micro benchmarks and a mini applica-
tion. The author sought to understand the differences between C-CUDA and Numba-
CUDA in terms of performance. Also, once Numba allows to implement the GPU code
with pure Python, the paper also aims to provide tips to improve applications written
with this framework.

The experimental results showed a performance penalty when applying Numba to
explore a GPU. Numba versions achieved 75% to 86% of the performance reached by
CUDA. The main reason for that is the reduction of GPU utilization with Numba. This
happens because some parts of the application, usually serial codes, are executed
by Python interpreter. Hence, these non-GPUs parts, which were not accelerated,
became a bottleneck and negatively affected performance.

S010 - Parallel Computation of Aerial Target Reflection of Background Infrared Ra-
diation: Performance Comparison of OpenMP, OpenACC, and CUDA Implementa-
tions (GUO et al., 2016)

This study focuses on a computation of the Infrared Radiation signature of an aerial
target. The authors developed these parallel algorithms with OpenMP (for CPUs) and
with OpenACC and CUDA (for GPUs). Considering GPU implementations, it was ap-
plied CUDA 6.0 and PGI 15.5 compiler (for OpenACC). The experiments were executed
on an NVIDIA Tesla K20c GPU.

Results regarding GPUs presented a speedup of 140 and 426 times over the se-
quential version for OpenACC and CUDA, respectively. So, the speedup obtained in
the OpenACC implementation was 33% of that in CUDA. The authors explained this
difference through a more effective use of GPU memory by the CUDA version. They
also claimed that, from a point of view considering the number of rewriting lines, Open-
ACC improves the programmer’s productivity, since its directives are defined without
changing the original sequential code. On the other hand, the CUDA approach re-
quired the rewriting of several lines during the implementation, most of them related
to the definition of kernel functions, shared memory usage, device memory allocation,
data transfers between host and device, and necessary synchronization. So, Open-
ACC can be seen as an option to make GPU programming easier and to obtain a
reasonable speedup.
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S011 - Productivity of GPUs under different programming paradigms (MALIK et al.,
2012)

In this work the authors encoded multiple versions of four NPB kernels (CG, EP, FT
and MG) with CUDA, OpenCL, PGI Accelerator (precursor of OpenACC) and MATLAB.
Despite no details about the implementations were given, the study evaluated perfor-
mance and ease of use intending to measure the impact of high-level frameworks (PGI
Accelerator and MATLAB) compared to CUDA and OpenCL.

Performance results (using classes S, W, A and B of NPB) pointed CUDA and
OpenCL with the best speedups over sequential versions. On the other hand, PGI
Accelerator and MATLAB achieved poor and similar speedups for most cases. Be-
sides that, the paper also presented a detailed programming effort analysis compar-
ing the source codes implemented using these four tools. The proceeded analysis
showed several perspectives about the code developed with each programming tool,
evaluating manual effort counting lines of codes and conceptual programming effort
counting specific key terms of the parallel programming model. The authors concluded
that parallelism-centric abstractions, like OpenACC and MATLAB, can provide better
productivity than library approaches closer to the GPU architecture, like CUDA and
OpenCL. However, this advantage usually sacrifices performance.

3.1.2 Overview

After presenting the studies regarding evaluations and comparisons between
CUDA, OpenACC and Python implementations for GPUs, this Topic intends to provide
an overview about the resources and metrics applied by each article to make such
differentiation. This overview considers performance and programming effort as sub-
jects for the executed comparisons since these are the aspects evaluated by our work.
Programming expressiveness was not included once none study proceeded such anal-
ysis. Table 1 depicts some summarized information about each article described in the
previous Section (3.1.1).

Table 1 shows that 10 from 11 of the described studies focus on performance eval-
uations considering applications implemented with at least two of the three tools de-
fined as scope (CUDA, OpenACC and Python). The only article that does not contem-
plate this question is S04. Actually, the whole paper presents evaluations using CUDA
and OpenACC programs over performance and programming productivity subjects, al-
though it is not proceeded a straight comparison employing this two frameworks. For
most of the executed experiments detailed by the papers, CUDA implementations out-
perform OpenACC ones. The main factor pointed for this behavior are the optimizations
that can be develop employing CUDA. It seems that improvements regarding memory
access on the GPU device are a key factor that leads CUDA applications for better
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Study Comparisons between CUDA, OpenACC and Python

ID Title Citation Performance Programming
effort

Resource/metric to evaluate
programming effort

S01
Accelerating Phylogenetic Infer-
ence on GPUs: an OpenACC
and CUDA comparison

(KUAN et al.,
2014) ✓

Obs: claims that OpenACC
requires less programming
effort than CUDA, even with-
out showing any information
about it

S02
A comparison of CUDA and
OpenACC: Accelerating the
Tsunami Simulation EasyWave

(CHRISTGAU
et al., 2014) ✓ ✓

Counting lines of code
added to the sequential
version of a program

S03 An Early Performance Compari-
son of CUDA and OpenACC (LI; SHIH, 2018) ✓

S04

Benchmarking OpenCL, Open-
ACC, OpenMP, and CUDA: pro-
gramming productivity, perfor-
mance, and energy consump-
tion

(MEMETI et al.,
2017)

Obs.: despite of evaluat-
ing programming productiv-
ity applying a programming
effort formula, none com-
parison regarding CUDA,
OpenACC or Python was
proceeded

S05

Comparing Programmer Pro-
ductivity in OpenACC and
CUDA: an Empirical Investiga-
tion

(LI et al., 2016) ✓ ✓

Evaluation based on hu-
man subjects, comparing
the time spent for students
to implement two programs
applying both frameworks

S06

CUDA vs OpenACC: Perfor-
mance Case Studies with Ker-
nel Benchmarks and a Memory-
Bound CFD Application

(HOSHINO
et al., 2013) ✓ ✓

Counting lines of code
added to the base version
of a program

S07

Evaluating the Performance
and Cost of Accelerating Seis-
mic Processing with CUDA,
OpenCL, OpenACC, and
OpenMP

(GIMENES;
PISANI;
BORIN, 2018)

✓ ✓

Counting directives and API
calls, showing the difference
between required lines for
OpenACC and CUDA

S08
GPU Computing with Python:
Performance, Energy Efficiency
and Usability

(HOLM;
BRODTKORB;
SÆTRA, 2020)

✓ ✓
Counting all lines of code of
a program

S09
Lessons learned from compar-
ing C-CUDA and Python-Numba
for GPU-Computing

(ODEN, 2020) ✓

S010

Parallel Computation of Aerial
Target Reflection of Background
Infrared Radiation: Performance
Comparison of OpenMP, Open-
ACC, and CUDA Implementa-
tions

(GUO et al.,
2016) ✓

Obs: claims that OpenACC
requires less programming
effort than CUDA since its
directives are defined with-
out changing the original se-
quential code

S011 Productivity of GPUs under dif-
ferent programming paradigms

(MALIK et al.,
2012) ✓ ✓

Evaluations based on man-
ual programming effort,
where all lines of code were
counted, and conceptual
programming effort, where
just specific terms of the
framework were counted

Table 1 – Overview from studies comparing GPU applications implemented with CUDA,
OpenACC and Python

results. However, for some specific scenarios, like executing just parts of a program
(S02), changing the compiler (S06) or accordingly to the application (S03), OpenACC
implementations achieved performances similar to CUDA versions.

The performance achieved by Python for GPUs is similar to CUDA and OpenCL,
as pointed by studies S08 and S09. Python, as an interpreted language, have to apply
compiling in order to accelerate the code for GPUs. This process generates programs
which are executed using CUDA or OpenCL runtime libraries. Hence, this compiling



38

is suggested by both papers as the cause for the similar performance between Python
and CUDA/OpenCL. Despite that, S09 detected some performance slowdowns when
applying Python with Numba. The reduction of GPU utilization is the reason by such
fact and it happens because the non-GPU parts of the code are executed by Python
interpreter.

Considering programming effort, 5 of the 11 studies performed an analysis propos-
ing to evaluate the differences between CUDA and OpenACC frameworks. Studies
S02, S06, S07 and S011 used a metric where lines of code (LOC) were counted to
claim that OpenACC can be used in a simpler way to implement an application tar-
geting GPUs, since it requires fewer lines than CUDA. An approach based on human
subjects was employed by S05, where the authors concluded that OpenACC enables
users to finish a parallel solution in a shorter time than CUDA. To achieve this conclu-
sion, they evaluated the time spent for students to implement two programs applying
both frameworks.

Analysing the differences between OpenACC and CUDA implementations, two well-
known factors were confirmed. First, OpenACC framework requires less programming
effort than CUDA. Second, CUDA can deliver, in general, better performance than
OpenACC. Nevertheless, it seems that this second fact is not true for all scenarios,
since for some specific experiments, OpenACC applications performed almost as good
as CUDA ones.

Regarding Python, study S08 also applied LOC counting to claim that Python’s im-
plementations are smaller than CUDA ones. This size reduction is achieved regarding
the host code of the application, since the GPU code (kernel) was implemented with
native CUDA. Further, this study recommended Python instead of C++ for GPUs be-
cause it offers a simpler and high-level interface which does not penalizes performance
for most cases.

As a conclusion of this overview about the presented studies, we can firstly point
that most of the works executed experiments with specific applications. Just S03, S04
(despite of none comparison between CUDA, OpenACC or Python was proceeded)
and S011 applied well-known benchmarks to evaluate the programming tools. Second,
the evaluations and comparisons between frameworks and applications were executed
using just metrics, that is, they were not guided by a model or a method with prede-
fined goals, rules and interpreting directives. Third, works S04 and S011 proposed
to evaluate programming productivity based on counting lines of code, a metric that
is not properly to proceed such analysis since, in our view, it must involve more vari-
ables. Fourth, we haven’t found any study comparing Python for GPUs with OpenACC,
a comparison that seems relevant because both tools offers higher-level approaches
of programming than CUDA. Besides, the studies did not display data to attest the re-
liability of their performance results employing statistical methods. By the end, S05
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presented a research considering human subjects (programmers) to evaluate the pro-
ductivity of OpenACC and CUDA. Although this can be an interesting approach, it is
difficult to be executed and can be influenced by external conditions that can affect
the results, like the participants’ previous programming experience and their effective
concern to collaborate with experimentation.

3.2 Chapter overview

This Chapter described related works which previously executed comparisons be-
tween CUDA, OpenACC and Python targeting GPU devices. The focus was to detail
the proceeded comparisons, analyzing the metrics and resources employed to evalu-
ate performance and programming effort, once programming expressiveness was not
regarded by any of the manuscripts. To finalize, it was presented an overview compar-
ing this related studies, concluding with an analysis concerning the executed evalua-
tions.



4 A MODEL TO COMPARE PROGRAMMING TOOLS TAR-
GETING GPUS BASED ON GQM METHOD

In order to proceed comparisons between programming tools, it is required a model
to guide such process. The purpose of this Chapter is to present the model we are
proposing to accomplish this guiding. Based on the GQM method for software mea-
surement (detailed by Section 4.1), this model aims to provide resources to guide the
comparison of frameworks targeting GPUs. Before its description, we will introduce
a background related to programming expressiveness and programming effort (Sec-
tion 4.2). Both concepts were employed to define the model. After that, the GQM
model itself is expounded, detailing their goals, questions and metrics. By the end, a
discussion describes how the model will be applied and which questions about pro-
gramming tools for GPU devices it is expected to answer.

4.1 GQM method for software measurement

There are in literature several methods that can be applied to execute software
measurements, a task which contemplates the means to quantify characteristics of
software products or software processes. Software measurement allows to determine
the software strengths and weaknesses, to provide a rationale for adopting/refining
techniques (e.g., What is the impact of the tool X on the effort?), or even to evaluate
software quality (BASILI; CALDIERA; ROMBACH, 1994; ERGASHEVA; KRUGLOV;
SHULHAN, 2019). Software measurement is usually employed in software engineer-
ing area. However, HPC also can make use of this kind of process, for instance, to
compare different parallel programming tools.

The GQM (short for Goal Question Metric) is a method for software measurement
based on a paradigm proposed by Basili and Weiss first presented in 1984. It was
originally applied for evaluating defects for a set of projects in the NASA Goddard
Space Flight Center environment. In a nutshell, GQM is a mechanism for defining
and interpreting operational and measurable software. For that, the GQM paradigm
defines and evaluates operational goals through the use of measurement. GQM also
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represents a systematic approach for tailoring and integrating goals with models to
evaluate software processes, products and quality perspectives of interest (BASILI,
1992).

Commonly, studies make use of software metrics to evaluate applications. De-
pending on the reason of these evaluations, metrics like number of failures, lines of
code, number of defects and total effort required for implementation can be applied.
The GQM method employs such metrics surrounded with the appropriate models and
goals in order to make clear which metrics to use, as well as how to properly interpret
them (BASILI, 1992). Hence, GQM focuses on eliciting goals (and also questions) as
a way to define which metrics are necessary to be collected. This means that each
defined measurement has always a related purpose (BERANDER; JÖNSSON, 2006).

The process for using the GQM approach follows the application of an hierarchical
structure composed by goals, questions and metrics. Figure 3 depicts the structure of
a GMQ model.

Figure 3 – GQM model hierarchical structure (BASILI; CALDIERA; ROMBACH, 1994)

A GQM model is based on goals, where the purpose of measurement, object and
issue to be measured, as well as a viewpoint describing why a measure is taken must
be specified. Each goal is refined into several questions to divide the issue into its
major components. A question, in its turn, is refined into metrics. The metrics can
be objective or subjective and are used in order to provide answers to the questions.
Questions can be applied by different goals and metrics can be shared by distinct
questions (BASILI; CALDIERA; ROMBACH, 1994).

Accordingly to Basili; Caldiera; Rombach (1994), the result of applying GQM
method is the specification of a measurement system targeting a particular set of is-
sues and a set of rules for the interpretation of the measurement data. The specific
results of each level that composes the GQM model are detailed by the following topics:

• Goal: Conceptual level. A goal is defined for an object of measurement (product,
process or resource), for a variety of reasons, with respect to various models of
quality, from various points of view, relative to a particular environment. Also, a
goal has to specify the objective of each measure;
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• Question: Operational level. A questions characterizes how the goal(s) should
be attained/achieved and the way it is going to be performed;

• Metric: Quantitative level. A metric represents the set of data associated with a
question in order to answer it in a quantitative way.

A GQM model can have goals defined intending to evaluate products. A GPU ap-
plication is a product developed using a programming framework. Regarding that, it
seems that GQM method can be applied to define models aiming to compare GPU
applications and, as consequence, the tools employed to implement them.

4.2 Programming aspects

This Section describes concepts related to programming aspects employed to de-
lineate a GQM model that seeks to evaluate and compare programming tools that offer
resources to explore GPU devices. The following topics address two concepts: pro-
gramming expressiveness (Topic 4.2.1) and programming effort (Topic 4.2.2).

4.2.1 Programming expressiveness

Accordingly to Higuera (2019), expressiveness is a word applied in the context of
logic and computer science to define the breadth of ideas that can be represented us-
ing a logic, language or algebra. The terms expressivity and expressive power can
also be employed to reference expressiveness. In essence, the more expressive a
language is, the greater the variety and quantify of ideas it can be used to repre-
sent (HIGUERA, 2019). This concept can be detailed with the following example when
different languages called A and B are compared:

• Language A: offers natural numbers and sum operator;

• Language B: offers natural numbers, as well as sum and multiplication operators.

Computing the square of a number is possible in both A and B. However, A re-
quires to proceed the calculus with just sum, not offering a fixed formula for calculating
the square of this number. Considering B, the square can be expressible as n X n.
Hence, it can be concluded that B has a greater expressive power than A. Further-
more, B captures the expressive power of A since we can expresses everything of A
in B (HIGUERA, 2019). The same view is shared by Felleisen (1990), who claims that
a language X is more expressive than a language Y whether X can express all the
facilities Y can express in a given language universe.

Following these concepts, a programming tool with more expressive power offers
more resources to delineate the ideas in a source code than a tool with less power.
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With more programming resources, this framework can provide different ways to define
some operation, offering, with that, more control over the execution of a code and
opportunities for optimizations. However, more expressive capacity is not necessarily
related to the “ease of use” of such tool, since we have distinct kinds of expressivity.

The expressiveness of a language can be seen with two different mean-
ings (FARMER, 2007; HIGUERA, 2019):

• Theoretical expressivity: the measure of what ideas can be expressed without
regard to how the ideas are expressed. This concept is commonly applied in
areas of mathematics and logic that deal with the formal description of languages
and their meaning, e.g. formal language theory, mathematical logic and process
algebra.

• Practical expressivity: the measure of how readily ideas can be expressed.
This abstraction can be useful considering programming languages, where the
offered code readability can be a key factor for choosing some specific tool to
implement applications.

Regarding the relations between theoretical and practical expressivity, a Language
X can have a high practical expressiveness since it provides a great set of mathemat-
ical functions. The theoretical expressiveness of Language X could also be seen as
high if it also offers resources to express low-level mathematical operations. Despite
that, whether this language does not make low-level operations available, its theoretical
expressiveness could be seen as low. Therefore, theoretical and practical expressivity
are not opposite concepts because one language can provide resources considering
both aspects.

The definition of an expressivity relationship leads to a natural measure of expres-
sive power between programming languages (FELLEISEN, 1990). However, we per-
ceived a lack of frameworks with resources to compare them using such characteristic.
Some studies have presented and surveyed comparisons focusing on low-level log-
ics and mathematics providing proves to point out expressiveness differences applying
a conceptual approach (DANTSIN et al., 2001; FELLEISEN, 1991; FARMER, 2007;
HIGUERA, 2019). The focus of our work is to compare specific frameworks to develop
applications targeting GPUs. Hence, these previous studies cannot be used as a basis
to our comparisons because they commonly focus on the semantics of a logic, while to
evaluate the programming expressiveness of a framework we will focus on the syntax.

4.2.2 Programming effort

The process to evaluate the programming effort of some application demands a
metric. As described in Section 4.1, such metric can be quantified applying one or
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more measurements. As a complementary notion regarding software, measurements
can be employed to describe, following previously defined rules, the properties of a
program (FENTON; BIEMAN, 2014). One of this properties can be its source code.
Therefore, the definition of measurements and metrics, as well as the properties to be
described, are essential to proceed a programming effort evaluation.

In literature, counting lines of code (LOC) is seen as a suitable metric to evaluate
programming effort. A shorter code is easier to be written, tested, maintained and less
vulnerable to fail than a larger code (FENTON; BIEMAN, 2014). Additionally, Jones
(2010) claims that the effort or cost of some application is related to the prediction
or measure of its size, an aspect that can be analysed from the source code of a
program. Besides that, LOC metric was previously applied for this purpose by studies
that proceeded similar evaluations considering programs for GPUs (MALIK et al., 2012;
CHRISTGAU et al., 2014; MEMETI et al., 2017; HOSHINO et al., 2013; GIMENES;
PISANI; BORIN, 2018; LIMA; DI DOMENICO, 2019; HOLM; BRODTKORB; SÆTRA,
2020). These aspects suggest that counting LOC is a good alternative in order to
proceed a programming effort analysis.

Regardless the status of LOC metric regarding programming effort evaluations, it is
not a properly metric to evaluate programming productivity, since this is a topic that in-
volves more variables, like language, programmer skills and code complexity. Another
aspect that must be taken into account to count lines of codes is the programming
model offered by a framework. Some approaches allow to implement more than one
instruction in just one line. Models based on compiler directives are examples of that,
being possible to declare several directives and clauses within one instruction. So, a
strategy to balance the counting of lines have to be employed when models like that
are included in the evaluations.

Using LOC metric also requires a definition about which lines will be counted. A
source code contains diverse types of instructions, like executable statements, decla-
rations of variables, headers and comments. In a code targeting GPU applications,
more classifications are present, once there are two kinds of statements: the ones re-
lated to host and the ones related to device (GPU). Before starting the measurement
process applying LOC, the sorts of lines that will be counted must be characterized to
be followed as a standard.

4.3 Proposed GQM model

In this Section, we propose a model, based on the GQM method, that offers re-
sources to guide evaluations and comparisons between programming tools applied to
encode GPU applications. Firstly, we describe the goals, questions and metrics which
compose the proposed GQM model. Following that, an overview about this model is
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introduced, discussing its main aspects.

4.3.1 Goals, questions as metrics

Aiming to regard different perspectives in order to properly compare frameworks for
GPUs, we defined three goals for our proposed GQM model. Each of them focus on
an aspect that we consider relevant for the implementation and execution of a GPU
program: programming expressiveness, programming effort and performance. In the
sequence, these goals are characterized, also presenting their questions and metrics.
The descriptions for questions and metrics which compose the model are presented
following a similar approach employed by (JARDIM et al., 2021).

G01 - Quantify the programming expressiveness offered by a programming tool that
focus on GPU devices.

This goal has as purpose to evaluate the programming expressiveness offered
by a tool to encode a GPU application. This analysis is proceeded considering the
programmer’s point of view when implementing an application and employing the re-
sources offered by a framework. The intention with this goal is to measure how the
ideas can be represented using a programming tool to develop a GPU program, also
analysing how the resources offered by a framework to define such ideas can impact
the programming effort and performance of an application. For that, the evaluations
will be executed over common GPU routines, like allocation of memory or kernel invo-
cation.

As questions, we defined three:

• Q1.1: How much work (programming effort) the expressivity provided by
the programming tool requires?

– M1.1.1:

* Name: OPER (number of operations)

* Definition: Counts the operations demanded to implement a specific
routine related to the GPU.

* Comment: This metric addresses the number of operations required to
specify a GPU routine, from its beginning to its end.

– M1.1.2:

* Name: INDI (number of indirections)

* Definition: Counts the indirections required to specify the operations of
a specific routine related to the GPU.
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* Comment: This metric addresses the number of indirections specified in
the operations counted by metric M.1.1.1 (OPER). One indirection is a
token used in the source code to reference something using a name. Ex-
amples of indirections are variables, functions, data types and reserved
words.

• Q1.2: What is the potential for optimizations offered by the expressivity of
a programming tool?

– M1.2.1:

* Name: EEXE (are the operations explicitly executed?)

* Definition: Evaluates if the GPU operations will be executed explicitly
as they were specified in the source code or if they require to be trans-
formed before processing. This metric is measured with values Yes and
No.

* Comment: Considers the source code execution of a GPU operation.
Some operations can be performed following the statements defined
in the code. Others can required a previous transformation to be pro-
cessed instead. This transformations are usually proceeded by a com-
piler.

– M1.2.2:

* Name: MEXE (are the operations executed following the order which
they have been disposed in the source code?)

* Definition: Analyzes when the operations for GPU are executed. They
can be processed following the exactly flow defined in the source code or
they can be performed in a different order (previous or future moment).
This metric is measured with values Yes and No.

* Comment: When an operation is executed in a moment different from
the defined in source code, this moment is usually defined by a compiler.

This question also applies metrics M1.1.1 (OPER) and M1.1.2 (INDI) to be an-
swered.

• Q1.3: What is the compatibility between the implemented and the executed
code?

Compatibility references the relation between what is implemented by the pro-
grammer and what is effectively executed by a runtime on GPU. Evaluating this
aspect is relevant to quantify the control a programmer has over the execution of
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an application. Also, the compatibility affects the understanding about the pro-
ceeded implementation, once how greater is such compatibility, greater is the
programmer’s comprehension about what will be performed on GPU just reading
the source code. This question is answered employing metrics M1.2.1 (EXEX)
and M1.2.2 (MXEX), since they measure aspects regarding the implemented and
executed code.

As a interpreting rule to guide the evaluations of this Goal, the greater is the value
achieved by a metric or a question, the greater is the expressivity power measured,
since the use of more operations and indirections can allow a better description of a
routine. This generates opportunities to specify ideas of different manners in the code,
increases the programmer’s control over the application and also makes feasible the
encoding of improvements and optimizations.

G02 - Quantify the programming effort required by a programming tool to develop an
application targeting GPU.

The present goal consists on evaluating the programming effort required by a
framework to develop an application to explore GPUs. As defined in Goal G01, this
evaluation also regards the perspective of a programmer implementing a GPU appli-
cation employing a programming tool. However, it focuses just on the amount of work
required by a coder to implement a program, discarding how the ideas are expressed.
The metrics delineated to quantify this goal are based on counting lines of code (LOC).
As an evaluation rule, more LOC means more programming effort required.

• Q2.1: How much programming effort does the GPU code, including kernel
implementation, require?

– M2.1.1

* Name: PTO (programming tool operations in device code)

* Definition: Counts the number of lines with operations related to the
programming tool in device code.

* Comment: Considers operations such as accesses to index positions
and GPU shared memory.

– M2.1.2

* Name: MM (memory management)

* Definition: Counts the number of lines with operations related to memory
management.

* Comment: Regards operations like allocations and deallocations.
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– M2.1.3

* Name: CG (GPU communication)

* Definition: Number of lines with operations for GPU communication.

* Comment: Operations like memory transfers are taken into account
here.

– M2.1.4

* Name: KIS (kernel invocation and synchronization)

* Definition: Computes the number of lines with operations employed to
invoke and synchronize kernels.

* Comment: Considers the operations to launch and synchronize a kernel
after its execution.

• Q2.2: How much programming effort does the host code require?

– M2.2.1

* Name: OG (operations related to GPU computation)

* Definition: Counts lines related to operations executed on host that are
useful to launch a GPU kernel.

* Comment: Includes instructions like selection of a GPU device, defini-
tion of sizes for memory transfers and setting of blocks and threads for
a kernel invocation.

– M2.2.2

* Name: OC (operations related to CPU computation)

* Definition: Computes lines with operations encoded in host code that
are applied to conclude the GPU processing using the CPU, e. g., a
reduction of some value to a host variable.

* Comment: This metric is related to operations that are executed on host.
However, they involves data which were or will be processed on the
GPU.

G03 - Quantify the performance delivered by an application executed on a GPU ac-
cordingly to the programming tool employed to implement it.

With this goal, we intend to evaluate the impact of the applied programming tool
on performance. As point of view to execute such evaluation, we must consider the
platform where the GPU application was performed, specially the GPU specifications.
Performance is a key aspect regarding GPU since this sort of device is widely employed
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to high-performance processing. So, the comparison of frameworks targeting GPUs
must focus on performance.

• Q3.1: How much time does the application execution require?

– M3.1.1

* Name: TGPU (GPU execution time)

* Definition: Computes the time for GPU execution considering a mean of
30 executions with at least 95% of confidence.

* Comment: This metric regards just GPU performance.

• Q3.2: What is the speedup achieved comparing sequential with GPU exe-
cution time (Ts / Tgpu)?

– M3.2.1

* Name: TSER (serial execution time)

* Definition: Computes the time for a serial execution considering a mean
of 30 executions with at least 95% of confidence.

* Comment: This metric regards executions of applications encoded with
the host programming language from the framework targeting GPU.

– M3.2.2

* Name: TSPU (GPU speedup)

* Definition: Computes the speedup dividing the results from metrics
M3.2.1 (TSER) over M3.1.1 (TGPU).

* Comment: This metric offers a perspective about the improvement
achieved using a GPU in comparison with the serial performance.

4.3.2 Model overview and discussion

The proposed GQM model is composed of three goals, seven questions (two each
goal but G01 that has three) and thirteen metrics. Goal G02 (Programming effort) has
more metrics than the other ones (six). Goal G01 has four metrics, while goal G03 is
composed by three metrics. Figure 4 depicts the GQM model hierarchically organized.

Goal G01 is defined with three questions focusing on aspects of the expressivity
that can influence the implementation (Q1.1) and the performance of an application
(Q1.2 and Q1.3). Firstly, we had in mind to propose questions related to theoretical
and practical expressivity. However, as long as we were developing this model, we
concluded that would not be possible, since the comprehension about theoretical and
practical expressivity of a programming tool is only possible after the analysis of the
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Figure 4 – Proposed GQM model to compare programming tools targeting GPUs

values obtained for the proposed metrics. Hence, this classification will be addressed
with the experiments of this work (Chapter 6).

The programming effort evaluation proposed by goal G02 will be proceeded making
a clearly division about GPU (device) and host codes. This approach allows to map
the code profile required by a programming tool, making possible to analyze, consid-
ering effort aspects, which kinds of operations are critical by each of them. Another
factor related to goal G02 is an analysis about the influence on effort exercised by ex-
pressiveness (contemplated by goal G01), since both features take into account the
implementation of an application executed by a programmer. Therefore, the impact
(if there is one) that G01 can produce on G02 also will be analyzed employing our
proposed model.

Goal G03 focuses on performance evaluations. These evaluations must quantify
the influence on performance accordingly to the framework chosen to implement a
specific application. The characteristics of an application will be included as an input
for this performance analysis using the proposed model.

In general terms, it is commonly accepted in parallel programming, specially using
compiled languages like C/C++ and Fortran, that approaches based on compiler direc-
tives (like OpenMP and OpenACC) require less programming effort than other strate-
gies (such as CUDA and OpenCL) where the programmer is responsible to define more
details in the source code. This fact is intensified when we consider programming for
GPUs, once the heterogeneous environment requires the management of more archi-
tectural features to delineate the parallelism. Even though this advantage, employing
compiler directives can limit the implementation of optimizations, a point that can result
on a performance penalty.

Following these facts, we intend that our proposed model were capable to provide a
better understanding about this relation between programming effort and performance
considering GPU applications. For that, we also included other variables to be ana-
lyzed beyond them, such as programming expressiveness and the use of a high-level
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programming language.
By the end, our GQM model was developed to be applied using a sequence of

tasks. Figure 5 presents a flow detailing how to employ it. The processes to evaluate
a programming tool with resources for GPUs starts using as input the framework itself
and applications or case studies regarding it. Next, the GQM model is applied to guide
the experiments, resulting on expressiveness, programming effort and performance
evaluations. Finally, this three sorts of results are summarized with a final analysis.
From the outcomes of final analysis we should be able to compare several versions of
one application developed with different frameworks.

- Framework
- Application
- Case study

Goal Goal

Question Question Question

Metric Metric Metric Metric

Expressiveness
evaluation

Programming effort
evaluation

Performance
evaluation

Final analysis

1. Input 2. Applying the GQM model 3. Results

Figure 5 – Flow to apply the proposed GQM model

In summary, we expect that the results achieved applying the proposed model ac-
cordingly to the flow defined in Figure 5 make possible to offer a perspective about pro-
gramming tools for GPUs. Such perspective must regard the characteristics, strengths
and weakness about each of the compared frameworks. Besides, it is supposed that
these results able us to answer the following questions:

1. Regarding a specific programming tool, is there an influence between the offered
programming expressiveness over the required programming effort to encode a
GPU application applying it?

2. Is there a relation between the programming expressiveness offered by the pro-
gramming tool and the delivered performance of an application?

3. Considering performance, what are the factors that leads to a higher/lower
penalty accordingly to the programming effort demanded by the framework?

4. Are there any other aspects besides programming expressiveness and program-
ming effort that can impact the performance of a GPU application?

4.4 Chapter overview

This Chapter presented a proposition of a model, based on the GQM method for
software measurement, to compare programming tools targeting GPUs. The proposed
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model was defined with three goals regarding features that we considered important
for the development and execution of a GPU program: (G01) programming expres-
siveness, (G02) programming effort and (G03) performance. These three goals were
detailed with seven questions (three for G01 and two for both G02 and G03), as well
as thirteen metrics (four, six and three for G01, G02 and G03 respectively). Also, it
was described how the model are going to be applied and which results are expected
to be achieved employing it. As background, this Chapter also addressed the con-
text about aspects used to define the proposed GQM model, such as programming
expressiveness and programming effort.



5 APPLICATIONS

In order to apply the proposed GQM model (defined in Section 4.3) to evaluate and
compare programming tools with resources to explore GPUs, it is required some ap-
plications implemented employing such tools. The set of these parallel programs must
be suitable for GPU processing and, to ensure a properly comparison, must provide
different characteristics. To accomplish that, we selected the NAS Parallel Benchmarks
(NPB) as applications to proceed experiments regarding the objective of this study.

The following sections describe the chosen applications. The Python/Numba ver-
sions of these programs were developed by us. For them, we also detailed how we
proceeded such implementations.

5.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks,1 commonly known as NPB, are a set of programs
developed by NASA Advanced Supercomputing Division composed of 5 micro com-
putational kernels and 3 simulated CFD (Computational Fluid Dynamics) applications
based on important classes of aerophysics programs (BAILEY et al., 1994). The pur-
pose of NPB is to proceed performance evaluations of highly parallel architectures,
like multicore or manycore. The benchmarks, originally implemented with Fortran, are
currently available employing different frameworks for parallelism. Most of them were
developed with C++, probably due to the popularity of this language in the scientific
programming context, being used to explore distinct kinds of platforms, like cluster,
multicore, multi-zone, accelerator, and GPU.

We chose NPB for this Thesis since its programs are well-known in the parallel
computing field and representative in different domains of computation. Besides that,
NPB has been extensively applied on experiments regarding performance evaluations,
as well as has available GPU implementations with CUDA (ARAUJO et al., 2020),
OpenCL (SEO; JO; LEE, 2011) and OpenACC (XU et al., 2015). Others advantages
offered by NPB are a set of pre-defined input sizes which can be selected as workload

1NAS Parallel Benchmarks: https://www.nas.nasa.gov/software/npb.html
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classes, in addition to routines for verifying the outputs delivered by the execution of an
application. This last factor contributes to implement new versions of the benchmarks,
once their output results can be validated.

NPB employs the word “kernel” to designate an algorithm that executes a spe-
cific transformation over some input data. This term is not related to “kernel” defining
functions targeting GPU devices on CUDA programs. Hence, a NPB kernel is not nec-
essarily implemented using just one GPU kernel since the ‘kernel” word is applied with
different meanings for both contexts. This point must be clarified intending to avoid
misinterpretations during the remaining of this work.

The following topics enumerates the five NPB kernels, as described by Bailey et al.
(1994). Such topics also specify the number of CUDA kernels developed for each
benchmark to explore GPUs using CUDA (regarding the implementations proceeded
by (ARAUJO et al., 2020)). The number of CUDA kernels is an indication about the
amount of GPU code developed and executed by each NPB program, an aspect that
has relevancy to analyze the results presented by this study.

• CG: This benchmark is called Conjugate Gradient. It calculates an estimate of
the largest eigenvalue of a symmetric positive definite sparse matrix using the
inverse power method. The conjugate gradient method is applied as a subroutine
for solving equations of a large, sparse, and unstructured matrix linear system.
The CUDA implementation of CG is composed by 13 CUDA kernels.

• EP: The Embarrassingly Parallel benchmark has as goal to generate indepen-
dent pairs of Gaussian random deviates. This type of problem is commonly seen
in Monte Carlo simulation applications, evolutionary algorithms, artificial neural
networks and many other computational intelligence techniques. Another char-
acteristic is that the EP kernel requires few communication during computation.
By the end, EP was modeled to GPU applying just 1 CUDA kernel.

• FT: It is a Fast Fourier Transform algorithm. The benchmark numerically solves
a three-dimensional partial differential equation (PDE) using forward and inverse
Fast Fourier Transforms (FFTs). The 3D FFTs are a key routine for some CFD
applications (like large eddy turbulence simulations) and the steps of their compu-
tations require considerable communication. The CUDA version of this program
has 14 CUDA kernels.

• IS: The Integer Sort kernel executes a sort over small integers. The sorting
method applied by the benchmark is based on the bucket sorting approach. This
algorithm was adapted to CUDA employing 12 CUDA kernels.

• MG: This kernel is a simple 3D MultiGrid benchmark. It computes an approximate
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solution to a three-dimensional discrete Poisson problem. 9 CUDA kernels were
implemented to the GPU version with CUDA.

NPB also consists of three applications. Accordingly to Bailey et al. (1994), this set
of programs mimics the computation and data movement characteristics of large scale
CFD applications. In summary, they solve a system of nonlinear partial differential
equations applying three different algorithms, as follows:

• BT: Block Tridiagonal algorithm, designed targeting GPUs with 19 CUDA kernels.

• LU: Lower-Upper Symmetric-Gauss-Seidel algorithm, implemented for GPUs
with 23 CUDA kernels.

• SP: Scalar Pentadiagonal algorithm, which was developed to GPUs employing
16 CUDA kernels.

Considering NPB version 3, NASA Advanced Supercomputing Division included
more applications to the benchmark suite. Despite that, this study will focus just on the
kernels and applications previously described that were part of NPB version 1.

5.2 Implementations with Python

The current available implementations of NPB have as main objective to deliver
performance. Due that, these codes are mostly developed with low-level compiled lan-
guages. However, the present work have defined as a goal to include a high-level
perspective about programming tools for GPUs. Hence, we have to implement a ver-
sion of NPB employing a framework which can provide such feature. To achieve that,
this version was encoded with Python.

We developed a GPU version with Python for each of the five NPB kernels: CG,
EP, FT, IS and MG, as well as each of the three CFD applications: BT, LU and SP. The
implemented codes kept the features offered by original NPB implementations, includ-
ing workload options defined by classes (from small to very large sizes), verification
routines to check the correctness of an execution, also including options to time and
profile operations. As part of the contributions of this Theis (SC2), we made our codes
available in a Git2 repository.

The Numba environment was employed to add GPU resources to our implementa-
tions with Python, a tool that enables CUDA support for this language. More details
about Python for GPUs and Numba were presented by Topic 2.2.5. The NPB programs
were implemented with Python targeting GPUs based on the CUDA versions presented

2NPB with PYTHON: https://github.com/danidomenico/NPB-PYTHON
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by Araujo et al. (2020, 2021). With the employment of Python and Numba for GPU ap-
plications, we were able to reduce the number of lines of code with operations related
to the GPU framework of most NPB kernels. This evidence was confirmed in our pro-
gramming effort analysis at Section 6.2. Nevertheless, we also noted that Numba did
not reduce GPU kernel code.

We were able to take advantage of the high-level programming features of Python
on the development task, like operations to declare and initialize arrays with a single
instruction using NumPy (NUMPY DOCUMENTATION, 2022) methods. For C/C++ and
native CUDA codes, arrays must be allocated to memory, initialized in an explicitly way
and released from memory after the end of computing. Another advantage is native
data types, specially Python complex numbers that were applied to implement the FT
kernel. It allows the execution of operations (e.g.: add, divide, conjugate) without
auxiliary functions as required by C++ structures.

A number of other specific CUDA features were used for our NPB implementations
such as local and shared memory resources, and atomic operations. Python built-in
functions and mathematical methods from modules supported by Numba were also
applied and contributed to optimize the kernels. Finally, Python’s support for complex
numbers eased the implementation of FT kernel, once this feature also includes GPU
code compiled with Numba.

Despite of the advantages in performance added by Numba to a Python code, ap-
plying it limits some operations and had to be considered during the implementations.
One of this limitations is the use of global variables, which required the employment of
more parameters to declare and call functions and GPU kernels. Particularly related
to GPU codes, Numba does not support the use of constant memory in the same way
of native CUDA. NPB defines some of their constant values accordingly to the input,
but Numba allows only immutable variables to be set to the GPU constant memory.
This fact required the usage of global memory and parameters to replace such feature.
Finally, as a technical restriction, some kernels of BT and SP applications couldn’t be
launched to execution with the same configurations of blocks and threads than the
native CUDA version. Therefore, we had to reduce the number of threads to avoid a
CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES exception at runtime.

Another noted limitation of Python/Numba to encode GPU programs is related to
automatic data transfers between CPU and GPU for NumPy arrays. This feature sim-
plify the code implementation, reducing the number of lines and releasing programmers
to deal with memory management. Despite that, automatic data transfers should be
applied carefully. Our preliminary experiments showed a considerable performance
penalty when an application alternates its execution flow from host to device many
times, since in each access to an array a memory transfer is executed. Thus, this au-
tomation can be seen as a systematic capability and the Numba runtime needs to be



57

improved to proceed data transfers just when the access of some data is mandatory.
By the end, we also implemented the NPB kernels with Python to define a baseline

employing sequential codes that could be compared to parallel versions. This can con-
tribute to analyse the differences on performance between both versions (sequential
and parallel). Our serial implementations were based on the C++ version presented
by Löff et al. (2021). For the sequential codes, we had to deal with performance is-
sues, since Python is an interpreted language and it is not able to deliver compu-
tational speed compared to C/C++ and Fortran, especially to process loops (HOLM;
BRODTKORB; SÆTRA, 2020). The solution for that was to apply the Numba environ-
ment, since this tool can optimize Python programs adding the speed of a compiled
code (NUMBA DOCUMENTATION, 2022). Although there were other tools able to pro-
ceed such optimizations (like Cython (BEHNEL; BRADSHAW; SELJEBOTN, 2009)),
we employed Numba for our Python sequential codes since we already had applied it
for our GPU codes.

5.3 Chapter overview

This Chapter described the GPU applications we chose intending to apply our GQM
model designed to evaluate and compare GPU frameworks. The programs from NPB
suite were selected since they have been largely applied on experiments related to
HPC. NPB has available implementations for GPU with CUDA and OpenACC, a fac-
tor that also contributed to its choice for this work. Hence, we had to develop a NPB
version with Python and Numba environment. Details about the proceeded implemen-
tations were reported by this Chapter regarding Python/Numba features, advantages
and limitations.

Table 2 summarizes information about each NPB version employed by this study.

Version Source Codes available at:

Serial C++ Löff et al. (2021) https://github.com/GMAP/NPB-CPP
Python Own implementation https://github.com/danidomenico/NPB-PYTHON

GPU
CUDA∗ Araujo et al. (2020) https://github.com/GMAP/NPB-GPU
OpenACC∗ Xu et al. (2015) https://github.com/uhhpctools/openacc-npb
Python/Numba Own implementation https://github.com/danidomenico/NPB-PYTHON

∗Implemented with C/C++ language

Table 2 – NPB versions applied on the experiments.



6 RESULTS COMPARING PROGRAMMING TOOLS FOR
GPUS EMPLOYING THE PROPOSED GQM MODEL

This Chapter presents results regarding experiments and evaluations aiming to
compare programming tools to implement GPU applications. These results were
achieved guided by the proposed GQM model delineated at Section 4.3. The GQM
model considers distinct perspectives about programming, like expressiveness and ef-
fort, as well as the impact of a programming tool on performance.

We applied three programming tools during our experiments: CUDA, OpenACC
and Python (using Numba environment to enable CUDA support to this language).
These three frameworks were employed to encode GPU programs: BT, CG, EP, FT,
IS,1 MG, LU and SP from NPB suite. In Chapter 5 we described such benchmarks and
pointed where their source codes are available. The Python versions (serial and GPU)
of these programs were developed by us. Such implementations were also detailed in
Chapter 5.

The following sections present the results related to each of the aspects defined
by the applied GQM model (a Section to each aspect). By the end, another Section
(6.4) discusses and analyzes these results intending to provide an overview about
the proceeded evaluations and comparisons, also intending to formulate a perspective
regarding the characteristics, strengths and weakness of each programming tool.

6.1 Programming expressiveness

Results related to the executed programming expressiveness evaluations are pre-
sented in this Section. These results are summarized in Table 3 and also discussed
at the end of this Section. Our evaluations were guided by Goal G01 of the proposed
GQM model which defined three questions with metrics to proceed the expressivity
analysis, as detailed by the following topics:

1Results for IS implemented with OpenACC were not computed since the source code of this bench-
mark was not made available by the authors of the code. Accordingly to them, IS requires prefix-sum
(scan) operation that is not supported by OpenACC standard yet.



59

• Q1.1 (Required programming effort):

– M1.1.1 - OPER: Number of operations required to implement a GPU task.

– M1.1.2 - INDI: Number of indirections demanded by the operations counted
by metric OPER.

• Q1.2 (Potential to optimizations):

– M1.2.1 - EEXE : Are the operations executed as defined in the source code?

– M1.2.2 - MEXE : Do the order of execution reflects the source code imple-
mentation?

– Metrics OPER and INDI.

• Q1.3 (Compatibility between implemented and executed code):

– Metrics EEXE and MEXE.

Our proposed expressivity evaluation must regard common routines that exist in
a GPU application. Aiming to evaluate these routines, we represented them as case
studies. Hence, our expressiveness analysis is based on five routines: Memory Al-
location, Memory Transfer: Host to Device, Memory Transfer: Device to Host, Kernel
Invocation and Using of Shared Memory. The following topics detail the proceeded
evaluations for each of the case studies. For them, we applied some patterns in the
code examples:

• v_host: reference to a vector variable allocated on the host (main) memory.

• v_dev: reference to a vector variable allocated on the device memory node.

• size_v: variable indicating the number of elements of v_host or v_dev.

6.1.1 Memory Allocation

Figure 6 depicts pieces of code expressing a memory allocation routine on device
using CUDA, OpenACC and Python/Numba.

1 // CUDA
2
3 cudaMalloc(&v_dev,
4 size_v * sizeof(double));
5 // ..... (code ommited)
6 cudaFree(v_dev);

1 // OpenACC
2
3 #pragma acc data create(v_host)
4
5
6 //

1 # Python/Numba
2
3 v_dev = cuda.device_array(
4 size_v, numpy.float64)
5
6 #

Figure 6 – Programming expressiveness: case study for Memory Allocation.

Accordingly to Figure 6, each of the programming tools require different operations
to allocate memory on device:
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• CUDA: requires 2 operations. To allocate memory is demanded 1 function pass-
ing 2 parameters. The second parameter is composed by 1 variable, 1 data type
and 1 function. So, this operation totalizes 5 indirections. To deallocate memory,
1 function must be called passing 1 parameter, which represents 2 indirections.
Both operations demand 7 indirections in total and are processed explicitly as
defined in the code.

• OpenACC: demands just 1 operation passing the variable which must be allo-
cated on device (1 indirection) to the create clause. How and when this memory
allocation is proceeded relies on compiler’s decisions.

• Python/Numba: requires 1 operation to allocate memory. This operation calls
a method which demands 4 indirections: the method itself and 3 variables. It is
executed explicitly as defined in the code, despite of the memory deallocation be
handled implicitly by the runtime.

6.1.2 Memory Transfer: Host to Device

The operations to proceed a copy of memory from host to device in a GPU applica-
tion implemented with CUDA, OpenACC and Python/Numba are illustrated by Figure 7.

1 // CUDA
2
3 cudaMalloc(&v_dev,
4 size_v * sizeof(double));
5 cudaMemcpy(v_dev, v_host,
6 size_v * sizeof(double),
7 cudaMemcpyHostToDevice);
8 // ..... (code ommited)
9 cudaFree(v_dev);

1 // OpenACC
2
3
4
5 #pragma acc data copyin(v_host)
6
7
8
9 //

1 # Python/Numba
2
3
4
5 v_dev = cuda.to_device(v_host)
6
7
8
9 #

Figure 7 – Programming expressiveness: case study for Memory Transfer: Host to
Device.

Following the examples presented by Figure 7, each programming tool must exe-
cute:

• CUDA: requires a memory allocation before transferring information to GPU. After
that, the data can be copied from host to GPU memory. By the end, this data must
be freed. The 3 operations require 14 indirections in total: 5 to allocate memory,
7 to execute the copy and 2 to deallocate the data. All of them are performed
explicitly as defined in the code.

• OpenACC: demands just 1 operation passing the variable which must copied to
device to the copyin clause (1 indirection). How and when this data is copied, as
well as allocated and deallocated, depends on compiler’s decisions.

• Python/Numba: the memory copy is defined using just 1 operation. The method
to perform such task requires 3 indirections: the method itself and 2 variables.



61

This operation is executed explicitly as defined in the code and, if necessary, the
runtime implicitly allocates and deallocates the data.

6.1.3 Memory Transfer: Device to Host

This Topic regards operations related to memory transfers from device to host for
the three programming tools that are being evaluated. Figure 8 depicts codes defining
these operations for each of the APIs.

1 // CUDA
2
3 cudaMemcpy(v_host, v_dev,
4 size_v * sizeof(double),
5 cudaMemcpyDeviceToHost);

1 // OpenACC
2
3 #pragma acc data copyout(v_host)
4
5 //

1 # Python/Numba
2
3 v_host = v_dev.copy_to_host()
4
5 #

Figure 8 – Programming expressiveness: case study for Memory Transfer: Device to
Host.

Considering the codes detailed by Figure 8, it is possible to imply:

• CUDA: a memory transfer from GPU to host can be executed by itself, since
the allocation and deallocation of host data is not related to a GPU operation.
Hence, CUDA requires just 1 operation with 7 indirections: 1 function call with 4
parameters (the third parameter is composed by 3 indirections). Such operation
is executed explicitly as defined in the code.

• OpenACC: just 1 operation must be defined, passing the variable that have to be
copied to host to the copyout clause. This results in 1 indirection. How and when
this memory allocation is proceeded relies on compiler’s decisions.

• Python/Numba: a memory transfer demand just 1 operation calling a method
which have 3 indirections: the method itself and 2 variables. This operation is
executed explicitly as defined in the code.

6.1.4 Kernel Invocation

This evaluation regards the simplest way a GPU kernel can be explicitly invoked
with CUDA, OpenACC, and Python/Numba. Figure 9 displays the source codes to
execute such task for these three frameworks.

1 // CUDA
2
3 kernel<<<blocks, threads>>>(
4 p1, p2, ..., pn);

1 // OpenACC
2
3 #pragma acc parallel loop
4 //

1 # Python/Numba
2
3 kernel[blocks, threads](
4 p1, p2, ..., pn)

Figure 9 – Programming expressiveness: case study for Kernel Invocation.

The code for each of the programming tools can be summarized as follows:
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• CUDA and Python/Numba: a kernel invocation is defined in the same way for
both APIs. This task requires 1 operation with at least 3 mandatory indirections
for both programming tools: blocks (number of blocks) and threads (number of
threads), as well as the kernel name. Furthermore, 0 or more parameters should
be passed accordingly to the kernel implementation. This operation is executed
as defined in the code.

• OpenACC: a kernel can be explicitly called combining the directives parallel

and loop in 1 operation. None specific parameter (indirection) is required, since
the number of blocks and threads are defined by the compiler. OpenACC offers a
way to define levels of parallelism like CUDA and Python/Numba. Nevertheless,
OpenACC is a framework for generic accelerators. So, there is no direct mapping
to CUDA’s threads and blocks. If necessary, these levels can be defined using
gang, worker and vector clauses (from outermost to innermost level).

The kernel parameters can also be seen as indirections for this case studies. How-
ever, we will not compute them to evaluate expressiveness since it depends on the
application characteristics. Hence, they won’t be counted as operations or indirections.

6.1.5 Using of Shared Memory

Figure 10 shows examples of code with operations to apply the GPU shared mem-
ory on kernel computations.

1 // CUDA
2
3 __shared__ double v[size_v];
4 // ..... (code ommited)
5 __syncthreads();
6 //

1 // OpenACC
2
3 #pragma acc parallel \
4 private(v_host)
5 #pragma acc loop
6 // ..... (code/loop ommited)

1 # Python/Numba
2
3 v = cuda.shared.array(size_v,
4 numba.float64)
5 # ..... (code ommited)
6 cuda.syncthreads()

Figure 10 – Programming expressiveness: case study for Using of Shared Memory.

The depicted codes illustrates different ways to deal with shared memory. The
following topics details each of the codes:

• CUDA: a shared memory variable must be declared using CUDA’s __shared__

construct. This operation required 4 indirections: 1 reserved word, 1 data type,
1 variable name and 1 array size. Also, it is required another operation (with 1
indirection) to synchronize the threads that are writing/reading to/from the shared
variable. When processing the code, both operations, which totalizes 5 indirec-
tions, are executed explicitly as defined in the code.

• OpenACC: this framework demands at least 2 operations to define a shared
variable (parallel and loop directives). The variable must be declared as private
in the parallel directive. So, for each parallel loop inside the parallel section,
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such variable can be defined as shared by the compiler. However, this decision
is taken by the compiling tool. Both operations required just 1 indirection, that is,
the variable which will be allocated on shared memory.

• Python/Numba: shared memory variables are defined in the same way as
CUDA. Two operations with a total of 5 indirections are required to handle them:
1 to declare the variable, which demands 4 indirections, and 1 to synchronize the
threads, which adds another indirection.

6.1.6 Programming expressiveness overview

Table 3 summarizes the metrics to evaluate programming expressiveness. These
metrics were applied over the studied cases detailed in the previous topics of this
Section. The Python/Numba programming tool is referenced as just Numba in the
table. We also translated the Yes and No values for metrics EEXE and MEXE to 1
and 0, respectively. This was necessary in order to compute the expressivity values for
each of the questions defined by Goal G01 of the GQM model.

Case
study

Program.
tool

Metrics and Questions
OPER INDI EEXE MEXE Q1.1+ Q1.2+ Q1.3+ Total*

CUDA 2 7 1 1 9 11 2 22
OpenACC 1 1 0 0 2 2 0 4Memory

Allocation Numba 1 4 1 1 5 7 2 14

Memory Transfer:
Host to Device

CUDA 3 14 1 1 17 19 2 38
OpenACC 1 1 0 0 2 2 0 4

Numba 1 3 1 1 4 6 2 12
CUDA 1 7 1 1 8 11 2 21

OpenACC 1 1 0 0 2 2 0 4Memory Transfer:
Device to Host Numba 1 3 1 1 4 6 2 12

Kernel
Invocation

CUDA 1 3 1 1 4 6 2 12
OpenACC 1 0 0 1 1 2 1 4

Numba 1 3 1 1 4 6 2 12
CUDA 2 5 1 1 7 9 2 18

OpenACC 2 1 0 0 3 3 0 6Using of
Shared Memory Numba 2 5 1 1 7 9 2 18

+Q1.1=OPER + INDI, Q1.2=OPER + INDI + EEXE + MEXE, Q1.3=EEXE + MEXE
∗Total = Q1.1 + Q1.2 + Q1.3

Table 3 – Programming expressiveness evaluation.

Each question of Table 3 was totalized using their own metrics. As introduced by
Goal G01, the greater is the displayed number by a metric or a question, the greater
is the expressivity power of the programming tool regarding a case study. More op-
erations and indirections means more ways to describe a routine, increasing the pro-
grammer’s control over the application and also creating opportunities to implement
improvements and optimizations.

As a result of the evaluations, OpenACC seems to provide a simpler way to express
GPU operations in the source code for all case studies. As pointed by Question Q1.1,
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OpenACC required less operations and indirections than CUDA and Numba. However,
this simplicity can prevent the encoding of optimizations, since less options and param-
eters are available to the encoder implement them. The execution of OpenACC code is
also dependent of compiling. All the case studies rely on the compiler to be effectively
performed, decreasing the compatibility between the implemented and the executed
code (Question Q1.3). Hence, the programmer, just reading the source code, can’t be
totally sure that the program will be executed as the way he/she has implemented it,
reducing the control that he/she has over the application.

CUDA results show a framework which offers an environment with great expressiv-
ity, since the GPU code is implemented using more operations and indirections than
OpenACC and Numba. This greater expressivity was achieved for all three questions
and five case studies in Table 3, implying that CUDA is a tool that provides good con-
trol over the application execution (compatibility between implemented and executed
code), as well as resources to implement optimizations.

The high-level approach offered by Numba due to Python language can also be
seen in Table 3. Accordingly to the expressivity evaluation, this tool delivers the same
compatibility between source and executed code as CUDA (Question Q1.3), but the
GPU routines can be implemented with less operations and indirections for most of
the case studies. Therefore, Numba seems to provide a greater power to develop
optimizations in the code than OpenACC, requiring to that simpler routines than the
ones demanded by CUDA.

By the end, this programming expressivity evaluation indicates some patterns about
the frameworks that can impact performance and programming effort. So, these results
motivated the execution of the new studies regarding such aspects. They will be pre-
sented by next sections of this Chapter.

6.2 Programming effort

This Section addresses the results considering the proceeded programming effort
evaluations, comparing the effort required by frameworks for GPUs as defined by Goal
G02 of the proposed GQM model. As detailed in Section 4.3, this goal intends to
answer two questions about the code of a GPU application: Q2.1 (programming effort
required by GPU code) and Q2.1 (programming effort required by host code).

We employed the counting of lines of code (LOC) to quantify the programming ef-
fort. LOC counting was detailed in Section 4.2.2. We only counted the executable
statements of the source code, that is, blank and comment lines, as well as variable
declarations and headers were discarded. Therefore, this evaluation focused on pro-
gram’s operations that are effectively executed. Due to the choice of LOC, we limited
our analysis to effort. Also as mentioned in Section 4.2.2, the evaluation of program-
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ming productivity aspects require more variables to be properly executed.
The programming effort evaluations are based on applications. Thus, three ver-

sions of the NPB programs were applied for the experiments implemented with CUDA,
OpenACC and Python/Numba. The following items enumerates the proposed metrics
for Goal G02. They represent types of operations. OpenACC is a framework that
uses an approach regarding compiler directives. As pointed in Section 4.2.2, some
strategy can be used to balance the counting of lines, since such approach allows the
specification of several operations in just one line of code. Hence, the following items
also details which kinds of instructions were considered for OpenACC by each of the
metrics.

• Q2.1:

– M2.1.1 - PTO: Operations related to the programming tool in device code.
For OpenACC, counts clauses which describe loops (gang, vector and
worker) and reductions.

– M2.1.2 - MM: Memory allocations and deallocations. Variables listed in the
create clause of data directive, as well as acc_malloc and acc_free calls
were classified as MM operations for OpenACC.

– M2.1.3 - CG: GPU communication (data transfers). OpenACC allows the
definition of these operations through clauses like present, copyin, copyout
and deviceptr, including also directive update.

– M2.1.4 - KIS: Kernel invocations and synchronization. OpenACC allows
defining these operations using kernels and parallel directives.

• Q2.2:

– M2.2.1 - OG: Host code to setup GPU kernels and data transfers.

– M2.2.2 - OC: Host code to conclude GPU processing (e.g. reducing. some
variable on host).

Table 4 shows the number of lines of code with operations required by each pro-
gramming tool for all applications grouped by type/metric. In the table, Python/Numba
is referenced as just Numba. As can be seen, OpenACC demanded less operations
than Numba and CUDA for all applications. In the analysed OpenACC codes, this num-
ber of operations could be even lower, since many directives and clauses were used
to optimize performance, adding instructions to improve memory management, data
transfers and loops. This explains the large number for PTO, MM and GC operations.
For the MG kernel, there are more operations of these types than specified with Numba
and CUDA. For FT and LU, GC operations also have a great number with OpenACC.
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Despite that, it is pertinent to mention that such programs could run with less or even
without these optimizations reducing the necessary effort. For BT, LU, MG and SP, KIS
operations for OpenACC can also be highlighted due to greater number of parallel
directives on the codes.

NPB
application

Program.
tool

Number of lines with operations (Metrics and Questions)
PTO MM GC KIS OG OC Q2.1+ Q2.2+ Total*

CUDA 193 24 108 19 367 0 344 367 711
OpenACC 110 18 28 46 2 0 202 2 204BT

Numba 204 10 17 19 248 0 250 248 498

CG
CUDA 76 26 14 13 96 17 129 113 242

OpenACC 21 5 11 16 2 0 53 2 55
Numba 76 5 14 13 77 17 108 94 202
CUDA 19 6 3 1 19 0 29 19 48

OpenACC 9 2 7 4 1 0 22 1 23EP
Numba 19 3 3 1 18 0 26 18 44

FT
CUDA 50 16 3 25 89 0 94 89 183

OpenACC 25 11 69 12 1 0 117 1 118
Numba 50 8 3 25 85 2 86 87 173
CUDA 44 20 5 15 62 2 84 64 148IS&

Numba 45 7 6 15 54 1 73 55 128

LU
CUDA 527 12 34 24 247 4 597 251 848

OpenACC 149 17 67 58 2 0 291 2 293
Numba 523 6 5 24 230 4 558 234 792
CUDA 64 12 6 9 116 11 91 127 218

OpenACC 69 21 22 24 2 0 136 2 138MG
Numba 64 1 6 9 100 9 80 109 189

SP
CUDA 109 26 98 16 151 0 249 151 400

OpenACC 154 23 44 65 2 0 286 2 288
Numba 169 13 10 16 131 4 208 135 343

+Q2.1=PTO + MM + CG + KIS, Q2.2=OG + OC
∗Total = Q2.1 + Q2.2

&IS = Results for OpenACC were not shown since the source code of the program is not available.

Table 4 – Programming effort evaluation accordingly to operation type.

Numba and CUDA required a similar number of operations for most metrics, includ-
ing the ones related to GPU device code (metrics of Question Q2.1). The exceptions
are MM and OG. Numba required half or less MM operations than CUDA with an in-
terface that does not demand memory deallocations. OG also presents a scenario
where CUDA needed more operations. The specification of the amount of data to be
transferred between memory nodes is the explanation for that. Finally, OG operations
for OpenACC presented a smaller number than Numba and CUDA. However, these
implementations have features to configure GPU execution using parameters, while
OpenACC just applied constant values for that.

Figures 11 and 12 present two versions of a matrix-vector multiplication algorithm
encoded with native CUDA and Numba, respectively. Their objective is to illustrate
the reasons why Numba demanded less MM operations than CUDA code. The ker-
nel implementations are similar in both codes but with different language syntax. On
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the other hand, the host code suffered significant changes. CUDA in Figure 11 re-
quires several operations to allocate, initialize, copy to/from GPU and release arrays.
These instructions were specified from line 16 to 34 and from line 38 to 42. NumPy
and Numba methods simplify operations in Figure 12 dealing with arrays and mem-
ory copies. Hence, the high-level operations offered by Python reduce code size and
managing arrays in host, demanding only 6 lines of code (22, 23, 26, 27, 30 and 40).

1 #define N 1200 //...Imports ommited
2 #define M 900
3
4 __global__ //CUDA kernel
5 void mult_vet_mat(double *v, double *m, double *res) {
6 int i = threadIdx.x + blockIdx.x * blockDim.x;
7
8 if(i < N) {
9 res[i] = 0;

10 for(int j=0; j<M; j++)
11 res[i] += (v[i] * m[i*M+j]);
12 }
13 }
14
15 int main() {
16 double *vet = (double*) malloc(N * sizeof(double));
17 double *mat = (double*) malloc(N * M * sizeof(double));
18 double *result = (double*) malloc(N * sizeof(double));
19
20 for(int i=0; i<N; i++) { //Initialize arrays
21 vet[i] = i+1;
22 for(int j=0; j<M; j++)
23 mat[i*M+j] = i*M+j + 1;
24 }
25
26 double *dev_v, *dev_m, *dev_r;
27 cudaMalloc(&dev_v, N * sizeof(double));
28 cudaMalloc(&dev_m, N * M * sizeof(double));
29 cudaMalloc(&dev_r, N * sizeof(double));
30
31 cudaMemcpy(dev_v, vet, N*sizeof(double),
32 cudaMemcpyHostToDevice);
33 cudaMemcpy(dev_m, mat, N*M*sizeof(double),
34 cudaMemcpyHostToDevice);
35
36 mult_vet_mat<<<(N+31)/32, 32>>>(dev_v, dev_m, dev_r);
37
38 cudaMemcpy(result, dev_r, N*sizeof(double),
39 cudaMemcpyDeviceToHost);
40 // Using result in host....
41 cudaFree(dev_v); cudaFree(dev_m); cudaFree(dev_r);
42 free(vet); free(mat); free(result);
43 }

Figure 11 – Matrix-vector multiplication in
C/C++ with CUDA.

1 from numba import cuda
2 import numpy
3
4 N = 1200
5 M = 900
6
7 @cuda.jit #CUDA kernel with Numba decorator
8 def mult_vet_mat(v, m, res):
9 i = ( cuda.threadIdx.x +

10 cuda.blockIdx.x * cuda.blockDim.x )
11
12 if i < N:
13 res[i] = 0
14 for j in range(M):
15 res[i] += (v[i] * m[i*M+j])
16 # END mult_vet_mat()
17
18
19 #### Host code ####
20
21 # Declare and initialize arrays
22 vet = numpy.arange(N)+1.0
23 mat = numpy.arange(N * M)+1.0
24
25 # Copy from host to device
26 dev_v = cuda.to_device(vet)
27 dev_m = cuda.to_device(mat)
28
29 # Declare dev_r on device
30 dev_r = cuda.device_array(N, numpy.float64)
31
32
33 # Call CUDA kernel
34 mult_vet_mat[int((N+31)/32), 32](dev_v,
35 dev_m,
36 dev_r)
37
38
39 # Copy from device to host
40 result = dev_r.copy_to_host()
41
42
43 # Using result in host....

Figure 12 – Matrix-vector multi-
plication in Python with Numba.

Considering programming effort results, Numba seems to be similar to CUDA, al-
though it demanded less operations in total for most applications (except SP). As an
advantage, Numba offers Python’s high-level approach to implement GPU applications
that contributes to reducing the number of required operations to deal with allocation
and movement of memory. Memory operations are usually seen as the main pro-
gramming bottleneck for many applications (LI; KESSLER, 2017). Additionally, for the
FT kernel, Python’s support for complex numbers reduced operations on GPU code
from 265 to 237 in comparison with CUDA. Numba provides many control features
to develop code optimizations at same level as CUDA. Such aspect requires more
operations to manage several details about GPU execution, which can be seen as a
disadvantage in terms of effort, especially when compared with OpenACC. The NPB
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implementations with OpenACC employed many operations intending to optimize their
performance. Even with that, OpenACC code required less statements than Numba
and CUDA.

Regarding questions Q2.1 and Q2.2, it seems that OpenACC required less lines
than CUDA and Numba for both questions in the implemented applications. Also,
Numba demanded less lines of code them CUDA. Hence, the effort required by the
experimented programming tools follows the same behavior for both device (Q2.1) and
host (Q2.2) code.

6.3 Performance

After presenting the results about programming expressiveness and programming
effort, this Section introduces results regarding performance. As defined by the pro-
posed GQM model, the performance evaluation references Goal G03. This goal com-
prises two questions: Q3.1 (GPU execution time) and Q3.2 (speedup). To answer
them, three metrics must be computed:

• M3.1.1 - TGPU: Execution time on a GPU platform (TGPU );

• M3.2.1 - TSER: Execution time on a CPU platform (serial or TS);

• M3.2.2 - TSPU: Speedup, calculated dividing serial execution time by GPU exe-
cution time (TS / TGPU );

We proceeded experiments on a GPU device aiming to quantify these metrics and,
with that, answering questions Q3.1 and Q3.2. These experiments were performed on
a Dell T420 machine composed of two Intel Xeon E5-2420 Sandy Bridge processors
and 6 cores per processor (totalizing 12 cores and 24 threads contexts) running at 1.9
GHz and 80 GB main memory (NUMA access). The machine is enhanced with two
NVIDIA Titan V GPUs with 5,120 CUDA cores at 1,200 MHz and a 12 GB of HBM2
memory. Our experiments were restricted to 1 CPU core and 1 GPU without CPU
parallelism. The software environment used was Debian 10 operating system, CUDA
11.2, GCC 8.3.0, PGCC 21.2, OpenACC 2.7, Python 3.8.8, Numba 0.53.1 and LLVM
10.0.1.

Regarding this section, each presented result was a mean of 30 executions. To
ensure a confidence of at least 95% we performed a statistical analysis over the ex-
perimental data. This analysis contemplates Kolmogorov–Smirnov Test to evaluate
whether the samples are normally distributed. Besides, to validate the comparisons
between different versions of the same benchmark, we applied the Student’s T-Test
and, for non-distributed samples, the Mann–Whitney U-Test. A detailed report con-
taining all executed statistical evaluations is available in Appendix A and also in this
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Git2 repository. To reduce the impact of an unexpected operating system interference
or other unexpected situations, we ran all programs on a dedicated computer with un-
used daemons disabled. We ran the benchmarks in an interleaved manner, mixing
programs, programming tools and input sizes, reducing the probability of interference
that could affect the quality of results collected for a given combination of parameters.

The programs of NPB suite (BT, CG, EP, FT, IS, LU, MG and SP) were executed
with classes B and C as input sizes. Both classes are fixed and preset within NPB
source codes. Accordingly to NPB documentation, class C has a workload about 4
times larger than class B. For each of these programs and input sizes, we performed
experiments with 5 versions, defined as:

• C++: serial C++ code compiled with GCC using -O3 optimization flag. As previ-
ously mentioned, these codes were presented by (LÖFF et al., 2021).

• Python: serial Python code. The critical performance sections were compiled
on-the-fly through the Numba environment.

• CUDA: GPU code developed with C++ and CUDA. The kernels were compiled
with NVCC employing -O3 optimization flag. CUDA implementations were devel-
oped by (ARAUJO et al., 2020).

• OpenACC: GPU code developed with C applying OpenACC directives targeting
Nvidia GPUs. These codes were originally implemented by (XU et al., 2015)
and adjusted to be compiled with PGCC by (ARAUJO et al., 2020). To build
them, it was applied -O3 -mcmodel=medium compiling flags. To execute them, it
was required to use the command ulimit -s unlimited to increase the memory
available in the stack. Obs.: as previously mentioned, the IS implementation was
not made available by their authors, so their results were not shown.

• Numba: GPU code implemented with Python. CUDA support was enabled with
the Numba environment.

As a first result for our performance experiments, Figure 13 depicts charts for the
NPB programs regarding GPU time (TGPU ). These results are the data employed to
compute metric TGPU and to answer question Q3.1.

For most cases, CUDA and Numba outperformed OpenACC, as well as CUDA and
Numba achieved similar results. Exceptions were the CG kernel, where CUDA and
OpenACC performed better than Numba, and MG kernel and LU application, where
CUDA version performed better than Numba and OpenACC version was faster than
Numba just with class B. CUDA results were faster than OpenACC as previously re-
ported by Araujo et al. (2020).

2Statistical analysis report: https://github.com/danidomenico/NPB-PYTHON-stat-analysis
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Figure 13 – Execution time for NPB programs on GPU (TGPU ) (Results for IS implemented with
OpenACC were not shown since the source code of the program is not available.)

The second result considering performance is related to executions on a CPU pro-
cessor (metric TSER from the proposed GQM model). Table 5 shows the serial time
(Ts) obtained by C++ and Python versions for the NPB suite. Sequential times with C++
were faster than Python, except for EP kernel, where the Python version was faster for
both classes.

Time (Ts)
Class B Class C

NPB program C++ Python C++ Python
BT 281.101 366.054 1,167.523 1,507.663
CG 112.241 163.602 318.593 427.222
EP 142.433 129.839 569.267 518.092
FT 125.279 151.234 372.670 622.605
IS 4.354 7.510 19.381 30.977
LU 209.341 246.204 1,008.549 1,141.680
MG 5.759 20.457 51.517 162.779
SP 208.363 229.561 843.760 934.838

Table 5 – Serial execution time in seconds.

Applying the results displayed by Table 5, we were able to calculate metric TSPU
(speedup) and answer question Q3.2. Hence, Figure 14 introduces performance re-
sults of GPU executions (TGPU ) over sequential times (Ts) aiming to show the speedup
values (Ts / TGPU ). We employed the execution times achieved by C++ serial versions
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to determine CUDA and OpenACC speedups, while it was used the times obtained by
Python sequential executions to compute Numba speedups.
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Figure 14 – Speedup results for NPB programs (TS / TGPU ) (Results for IS implemented with
OpenACC were not shown since the source code of the program is not available.)

CUDA reached the best speedups for BT, CG, EP and LU, while Numba had the
best results for FT and IS. The best speedups for MG and SP were achieved by CUDA
with class B and by Numba with class C. Numba and CUDA outperformed OpenACC
results for almost all kernels. The exceptions were CG and LU (only from class B)
where OpenACC had a better speedup than Numba. These comparisons between
versions were validated applying the Student’s T-Test and the Mann–Whitney U-Test
(for non-distributed samples). More details about these statistical tests can be seen in
Appendix A.

As a general overview about the experiments, the best performance results were
achieved by CUDA. However, Numba reached a performance similar to CUDA for BT,
EP, FT, IS, and SP, while OpenACC had the worst results for most of the programs. The
exceptions were CG, LU and MG benchmarks with Numba which performed consider-
ably slower than CUDA and even OpenACC.

Considering that, we proceeded an analysis to verify the reasons which caused
the Numba drawbacks for CG, LU and MG. GPU traces generated with nvprof3 tool

3nvprof is a tool offerred by Nvida to collect and view profiling data of CUDA-related activities on
both CPU and GPU.
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showed two: (1) Numba requires more time to execute some GPU kernels than
CUDA and (2) Numba executions presented a low percentage of GPU utilization.
For CG, the gpu_kernel_three() routine, which represents more than 80% of the
workload executed on GPU, is performed 14.0% and 11.9% slower with Numba than
with CUDA for classes B and C, respectively. For MG, the resid_gpu_kernel() and
psinv_gpu_kernel() GPU kernels are the main tasks, together representing the pro-
cessing of more than 60% of one MG interaction. Numba performs both tasks 23.3%
and 12.0% slower than CUDA for classes B and C, respectively. One aspect that can
justify the slower executions of the GPU kernels with Numba is the different compiler
employed for each version. CUDA programs were compiled by us with NVCC, while
Numba ones were automatically compiled with LLVM library.

Table 6 displays the percentage of GPU utilization for CG, LU and MG programs
developed with CUDA and Numba, detailing the ratio between the processing time just
on the GPU and the total time required by the whole application. As can be seen,
the three benchmarks presented a lower GPU utilization with Numba. For CG and
MG kernels, this fact impacted performance along with the slower executions of the
GPU routines previously detailed. For LU application, this is the key aspect to explain
the performance penalty with Numba, since both CUDA and Numba achieved similar
times executing routines on the GPU (as showed by Figure 15). The low percentage
of GPU utilization with Numba happens because some routines of the benchmarks
cannot be accelerated to GPU, being performed sequentially by Python on the CPU.
Python, as an interpreted language, executes serial code much slower than compiled
languages. Hence, these non-GPU parts became a bottleneck and negatively affect
performance for Numba applications. This behavior was also reported by Oden (2020).
The performance drawback was higher on class B than class C (Figure 13) since the
GPU utilization on class C increases with Numba.

Percentage of GPU utilization∗

Class B Class C
NPB program CUDA Numba CUDA Numba

CG 95.18 29.32 96.94 47.05
LU 94.95 6.53 99.11 20.43
MG 99.99 16.60 99.40 79.69

∗Time on GPU / Total time of the application

Table 6 – GPU utilization: percentage of execution exclusively on the GPU device.

6.4 Discussion and final analysis

This Section discusses and proceeds a final analysis regarding the executed exper-
iments intending to achieve goals G01 (expressiveness), G02 (effort) and G03 (perfor-
mance) of the proposed GQM model. Analyzing the results about each of the goals,
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Figure 15 – Traces for LU application regarding the execution of one interaction on
GPU - classes B and C for both CUDA and Numba

this Section aims to build a perspective addressing the three programming tools ap-
plied during the experiments (CUDA, OpenACC and Python/Numba).

Firstly, the results suggest a relation between Goals G01 and G02. The OPER met-
ric from Goal G01, which maps the number of operations to implement a GPU routine,
is related to the LOC metric used during the programming effort evaluation. Thus, if
a framework offers an expressiveness that demands more operations to specify the
ideas in the code, it will probably require more lines of code to develop an application.
Nonetheless, this relation between both Goals can be seen as incomplete, once the
programming effort metric does not maps the indirections required by the expressivity.
If so, it would be possible to differentiate programming models which require the same
number of operations but a distinct number of indirections. In a situation like that, the
effort could be higher or lower depending on the number of indirections.

Goals G01 and G03 are related since we evaluated the potential for optimizations
of a programming tool offered by its expressiveness. The results of expressivity and
performance suggest that models which offer an interface requiring more operations
and indirections have a high potential to provide better performance. This happens
because they execute the GPU routines as explicitly as implemented (high compatibility
between source and executed code), following for that the order which these routines
have been disposed in the source code. On the other hand, the programming tool
itself can add performance penalties which are not related to the expressiveness. This
was observed analysing the performance results of some Python/Numba applications,
which presented slowdowns related to limitations from Numba environment and Python
language.

A relation between Goals G02 and G03 can also be implied from the results. Open-
ACC, despite of requiring less lines of code than CUDA and Python/Numba, suffered
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from huge slowdowns for most of the executed benchmarks. Regardless that, this
relation can also be associated to the expressivity offered by a programming model.
For example, CUDA and Python/Numba achieved similar performance for most of the
applications, even with Python/Numba requiring less effort than CUDA. It seems that
the expressivity provided by Python/Numba allows to implement a GPU code with less
operations than CUDA. Hence, the results suggest that programming effort itself can
be employed as an indicative about the performance delivered by an application. How-
ever, a properly analysis about the impact of a framework on performance should also
consider the programming expressiveness evaluation.

Regarding just Goal G01, it seems that the proceeded programming expressive-
ness evaluation (Section 6.1) did not converged to a classification enhancing both the-
oretical and practical expressivity. The applied metrics can better characterize the
notion of practical expressivity, since they measure how ideas can be expressed em-
ploying a framework. Theoretical expressivity focus on what ideas can be expressed,
an aspect not addressed by these metrics. Following this premise, the proposed GQM
model able us to conclude that the greater is the expressiveness value achieved by a
programming tool, the greater is the practical expressivity of this framework. Hence,
the ideas expressed with its API seems to offer a better readability in comparison to a
framework that scored less points for the applied metrics and questions.

As a complementary perspective, APIs are conventionally classified as high-level
or low-level considering the programming abstractions provided by them to develop
an application. After concluded the experiments with GPUs, our evaluations suggests
the requirement of two variables to properly classify these tools considering this char-
acteristic: the programming language (C/C++ or Python) and the framework (CUDA,
OpenACC and Numba). So, regarding the employed programming resources (lan-
guages and frameworks), we have for CUDA a low/low scenario, since both language
and framework offer low-level abstractions. For OpenACC we have a low/high situation
and for Numba a high/low case. A general categorization concerning the abstraction
of each language/framework is depicted by Table 7. Unfortunately, we were not able
to proceed experiments with a high-level framework with Python (high/high scenario)
since we could not find any tool with features similar to OpenACC available for it. We
found a project with such features in this repository4, but it is still a prototype.

To finalize, it seems that, considering CUDA, OpenACC and Python/Numba, the
conducted analysis guided by our proposed GQM model suggests:

• CUDA has the harder API to encode a GPU program. Its interface requires a
greater programming effort than the other tools with an expressivity where the
operations are commonly encoded using several indirections. As advantages of

4pyACC: https://github.com/MaxStrange/pyACC
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Framework
Language CUDA* OpenACC

C/C++ Low Low Low High
Python High Low –

∗Numba enables CUDA support for GPU programming with Python
Table 7 – Programming abstraction level offered by the evaluated APIs considering
language and framework

such approach, CUDA offers great control over the code execution, high compat-
ibility between implemented and executed code, also providing opportunities to
develop optimizations. Therefore, these aspects result in a high performance.

• OpenACC is the easiest way to develop an application to GPU, offering a simpler
approach which demands a low number of operations and indirections to express
the GPU routines. OpenACC also requires low programming effort, since the par-
allel code is developed incrementing the serial one. Despite these advantages,
OpenACC usually penalizes the performance of the applications. A reason for
such fact is that the programmer does not have much resources to implement
optimizations. Further, the execution of the implemented program relies on com-
piler decisions, a factor that reduces the compatibility between implemented and
performed code.

• Phyton/Numba has an API that offers a compatibility between source and exe-
cuted code similar as CUDA, even though requiring less operations and indirec-
tions to specify the GPU routines. This is a result of the high-level approach
offered by Python language. So, the programming effort demanded by Phy-
ton/Numba is usually less than that required by CUDA. These aspects did not
impacted performance significantly, since Phyton/Numba and CUDA achieved,
considering the executed experiments, similar results for most of the benchmarks.
The experiments also suggest which Phyton/Numba can reach performance im-
provements proportionally greater in comparison with CUDA for some programs.
However, the Phyton/Numba results presented slowdowns for some specific ap-
plications. These penalties derived from the use of Python language and Numba
environment, once the programs can take longer to execute GPU routines and
the serial tasks are performed on CPU in an interpreted way. Both factors were
not related to expressivity and programming effort, but they can negatively impact
performance depending on the program’s characteristics (e.g. applications with
routines that cannot be parallelized for GPU).
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6.5 Hardware platform influence

As a complement to the results described by Section 6.3, the Appendix B presents
additional performance results achieved executing the NPB versions implemented with
CUDA, OpenACC and Numba on a different platform . We just executed performance
experiments, since the programming expressiveness and programming effort results
are not related to a hardware device.

6.6 Chapter overview

This Chapter introduced experimental results regarding the comparison of program-
ming tools to implement GPU applications. These results were obtained applying a
GQM model over case studies and GPU applications developed with CUDA, Open-
ACC and Python/Numba, enhancing three goals of evaluation: programming expres-
siveness, programming effort and performance. After each goal has been addressed
individually, a discussion and final analysis was presented in order to provide a general
overview about the achieved results, as well as an evaluation considering the influence
of the goals over each other.



7 CONCLUSION

This Chapter presents the final remarks about this Thesis, also addressing the pub-
lications proceeded during the development of this study and the future works that we
foreseen to continue our researches regarding programming tools for GPUs.

7.1 Final remarks

The use of GPUs to achieve performance gains is increasing for both HPC and
commercial purposes. Despite that, the encoding of programs targeting these devices
is considered challenging due to the heterogeneous environment which a programmer
is required to deal during the development of a GPU code. Also, there isn’t a standard
framework that can be used as a “safe choice” in order to proceed an implementation
targeting GPUs, a factor that can cause doubts in the process to select a programming
tool. This fact is intensified since the chosen framework can impact different points of
the implemented application, like performance and programming effort.

The exposed concerns about GPU programming were the focus of this Thesis. We
had in mind that evaluations and comparisons between programming tools could offer
a perspective about them, providing elements to support the choosing of a framework
to develop a GPU program. Regarding that, this work formalized a model to evaluate
and compare programming tools for GPUs. This model, based on the GQM method
for software measurement, proposes goals, questions and metrics to analyze distinct
aspects of a framework: programming expressiveness, programming effort and perfor-
mance. Each of these aspects was characterized as a goal representing a purpose of
evaluation, being composed by their own questions and metrics. Although other studies
have executed comparisons between frameworks for GPUs, none of them proceeded
such task guided by a predefined model, since they usually employed just metrics to
quantify and expose information about a programming tool.

The proposed GQM model was applied using three programming tools targeting
GPUs: CUDA, OpenACC and Python/Numba. The first two frameworks were selected
once they offer distinct approaches of programming (C/C++ library for CUDA and com-
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piler directives for OpenACC), as well as both have official support from Nvidia to ex-
plore their GPUs. We also employed Numba as a third framework of comparison, a
tool that enables GPU support in Python language allowing to encode a GPU program
with pure Python code. Python is a high-level language while C/C++, which was used
to explore CUDA and OpenACC as third-party libraries, is considered low-level in com-
parison to Python. Therefore, applying Python and C/C++ in this work offered a point
of view about languages of different programming-abstraction levels (low and high).

For the experiments, we employed the set of programs from NPB suit implemented
with CUDA, OpenACC and Python/Numba. The programs with Python/Numba were
encoded by us and are available at this Git1 repository. As defined by our proposed
GQM model, such experiments focused on three aspects. Firstly, it was evaluated
the programming expressiveness for each of the frameworks based on case studies
contemplating common GPU operations: Memory Allocation, Memory Transfer: Host
to Device, Memory Transfer: Device to Host, Kernel Invocation and Using of Shared
Memory. Next, the required programming effort and achieved performance for each
version of the NPB programs were also gauged based on their source code and exe-
cution on a GPU device, respectively. Finally and as delineated by the GQM model,
these results were discussed and analyzed to provide a perspective about the frame-
works considering their characteristics, strengths and weaknesses. This discussion
also contemplated the influence between the evaluated aspects over each other.

In summary, the executed experiments, evaluations and comparisons suggested
that CUDA has an API which offers great expressivity, resulting in great control over the
executed code, opportunities to encode optimizations and high performance. However,
these advantages also require high programming effort load, since the GPU routines
are usually implemented using several operations and indirections. On the other hand,
OpenACC provides an API demanding less lines of code with operations related to
GPU than the other analyzed frameworks. This happens due to use of an approach
relying on compiler directives. Regardless that, the programmer doesn’t have much
features to implement optimizations, as well as the OpenACC code depends on com-
piler decisions to be executed on GPU. These factors usually contributed to add perfor-
mance penalties to the applications which achieved the worst results for most cases.
By the end, Python/Numba offers similar expressivity than CUDA considering the re-
sources to specify GPU routines and to implement optimizations in a source code.
As an advantage, Python/Numba implementations require a lower programming effort
in comparison with CUDA as a result of the Python’s high-level language. The per-
formance delivered for most of NPB programs also achieved an equivalent level than
CUDA. Nevertheless, the use of Python/Numba presented performance slowdowns
for a part of the benchmarks, some of them caused by the characteristics of Python

1NPB with PYTHON: https://github.com/danidomenico/NPB-PYTHON
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language and Numba environment.
The main and the specific objectives delineated for this Thesis could be achieved

during the development of this study. Firstly, we defined the proposed GQM model ac-
complishing the SO1. With the implementation of NPB with Python, we also reached
the SO2. Applying the outputs from SO1 and SO2, we were able to conduct ex-
periments regarding programming expressiveness, programming effort and perfor-
mance. Therefore, we proceeded evaluations and comparisons between the frame-
works (CUDA, OpenACC and Python/Numba), leading us to achieve SO3. By the end,
SO4 was reached presenting a perspective contemplating each of the three frame-
works. This perspective was defined using the experimental results related to SO3.

We suppose that our Thesis contributed in the research of programming tools for
GPUs since it offers a model to guide evaluations and comparisons of frameworks.
These comparisons were employed to formulate a perspective considering the charac-
teristics, strengths and weaknesses of a programming tool. Besides, the presented ex-
perimental results improve the knowledge about CUDA, OpenACC and Python/Numba,
providing resources that can be applied to assist the processes to choose a program-
ming tool to implement GPU applications. Another applicability for this study is related
to the improvement of the frameworks, since the results achieved guided by the pro-
posed model allow a better understanding about the weak points of a tool. Thus, such
points can be advanced, not only to optimize a framework, but also be considered
during the design of new programming tools targeting GPUs.

7.2 Publications

During the term applied to develop this Thesis, we proceeded some publications
regarding APIs for parallel programming, as well as comparisons between frameworks
for GPUs. The published papers are enumerated as follows:

1- Daniel Di Domenico and Gerson Geraldo H. Cavalheiro. JAMPI: A C++ Par-
allel Programming Interface Allowing the Implementation of Custom and
Generic Scheduling Mechanisms, 2020 IEEE 32nd International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD), 2020,
pp. 273-280.

– This study introduces the design and implementation of JAMPI, a generic
parallel programming interface focused on code reuse, productivity and high-
level abstraction to enable the construction of parallel applications targeting
multicore platforms. With this work, we delved deeper into the concepts
of programming tools for parallel environments, a fact that contributed to
develop this Thesis.
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2- Andre D. Jardim, Kevin Oliveira, Diogo J. Cardoso, Daniel Di Domenico, Andre R.
Du Bois, and Gerson Geraldo H. Cavalheiro. An extension for Transactional
Memory in OpenMP, 25th Brazilian Symposium on Programming Languages
(SBLP’21), 2021, pp. 58–65.

– In this work, we applied the GQM method for software measurement to an-
alyze OpenMP codes aiming to evaluate distinct extensions of transactional
memories, including one that had been proposed by ourselves. Hence, this
work was our first experience dealing with the GQM method to evaluate and
compare parallel programming tools.

3- Daniel Di Domenico, Gerson Geraldo H. Cavalheiro and João V. F. Lima. NAS
Parallel Benchmark Kernels with Python: A and programming effort analy-
sis focusing on GPUs, 2022 30th Euromicro International Conference on Paral-
lel, Distributed and Network-based Processing (PDP), 2022, pp. 26-33.

– This paper presents the implementation of the 5 NPB kernels with Python
targeting CPU (serial) and GPU. We proceeded performance and program-
ming effort experiments using these benchmarks, comparing the achieved
results to other GPU versions developed with CUDA and OpenACC. This
manuscript is the source of some results that were employed by this Thesis
to analyze frameworks for GPUs.

4- Daniel Di Domenico, João V. F. Lima and Gerson Geraldo H. Cavalheiro. NAS
Parallel Benchmarks with Python: A performance and programming effort
analysis focusing on GPUs, The Journal of Supercomputing (submitted).

– This study is an extended version of paper number 3 published in PDP 2022.
As original content, we included the implementation of three NPB applica-
tions with Python (both serial and GPU versions). We also conducted ex-
periments with CUDA, OpenACC and Python considering performance and
programming effort. The results of such experiments were also presented
by this Thesis.

7.3 Future works

As future works, we can focus on different topics intending to improve the current
results, also defining more resources to complement the objectives delineated to this
study. Regarding the proposed GQM model, new questions and metrics can be formu-
lated to advance on the evaluations about programming tools for GPUs. For example,
a new metric could be added to measure specific tasks related to the execution of a
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GPU program, such as (1) the cost of data transfers between memory nodes and (2)
the execution time of the main GPU kernels of the application. These metrics could be
used to identify some bottleneck that penalizes performance.

Another future assignment that we foreseen is to perform experiments using other
programming tools. The proposed GQM model was designed to evaluate any frame-
work which targets GPUs. It just requires that applications are implemented employing
this tool since these programs are demanded to proceed the programming effort and
performance evaluations. Hence, a possibility is to execute experiments employing
the frameworks listed on Topic 2.2.6 which were originated from academic researches.
These tools offer distinct programming resources in comparison to the ones we have
applied on our experiments. We seem that experiments guided by our model can be
useful to offer a point of view about these other frameworks, not just to evaluate and
compare them, but also to provide a better understanding about how they can be im-
proved.

Lastly, we also have in mind to execute evaluations with CUDA, OpenACC and
Python/Numba using applications from other benchmark suits focused on GPUs. Mi-
crobenchmarks could also be employed on these new experiments. They will gen-
erate more information about each of the frameworks, complementing the analysis
performed about them. Such factor could improve the presented perspective regarding
programming expressiveness, programming effort and performance aspects.
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APPENDIX A – Statistical analysis over performance results

This Appendix focus on provide information regarding a statistical analysis executed
over the performance results presented by Section 6.3. The objective here is to ensure
a confidence of at least 95% to the experimental data set. The versions of programs
contemplated by this Appendix are:

• C++: serial C++ code.

• Python: serial Python code.

• CUDA: GPU code developed with C++ and CUDA.

• OpenACC: GPU code developed with C applying OpenACC directives targeting
Nvidia GPUs.

• Numba: GPU code implemented with Python and CUDA support enabled with
Numba environment.

To accomplish the goal for this Appendix, we firstly proceeded the Kol-
mogorov–Smirnov Test (KS) aiming to check whether the samples are normally dis-
tributed. Table 8 depicts the results achieved for each of the executed versions and
input sizes including mean, standard deviation (STD) and KS Test. If column KS p-
value displays a value greater than 0.05, the sample is normally distributed consider-
ing a significance level of 95%. The non-distributed samples are highlighted with red
in Table 8.

Most of the samples showed by Table 8 are normally distributed. Just CG (Python
for class B), EP (C++ for class B and Numba for classes B and C), FT and MG (both
with CUDA for class C) kernels presented some versions where the samples did not
achieved a normal distribution.

The second statistical analysis proceeded aimed to validate the significance of com-
parisons between different versions of the same benchmark. For that, we applied the
Student’s T-Test (or just T-Test) and, for non-distributed samples, the Mann–Whitney
U-Test (or just U-Test). Table 9 shows data contemplating T-Test and U-Test values
for each of the GPU versions compared during the performance experiments. If the
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Kolmogorov–Smirnov Test for each input size
Class B Class C

NPB
Application Version Sample

size Mean STD KS
p-value

Normally
distrib.?

Sample
size Mean STD KS

p-value
Normally
distrib.?

C++ 30 281.101 1.333 0.344 ✓ 30 1,167.523 9.371 0.187 ✓
Python 30 366.054 2.258 0.179 ✓ 30 1,507.663 7.126 0.694 ✓
CUDA 30 3.445 0.002 0.508 ✓ 30 14.158 0.003 0.546 ✓

OpenACC 30 11.379 0.021 0.336 ✓ 30 47.788 0.033 0.201 ✓
BT

Numba 30 6.078 0.002 0.244 ✓ 30 22.099 0.003 0.838 ✓

CG

C++ 30 112.241 0.414 0.095 ✓ 30 318.593 0.459 0.407 ✓
Python 30 163.602 1.728 0.004 − 30 427.222 6.426 0.143 ✓
CUDA 30 0.757 0.005 0.451 ✓ 30 1.824 0.005 0.373 ✓

OpenACC 30 0.989 0.012 0.113 ✓ 30 2.055 0.004 0.997 ✓
Numba 30 2.879 0.050 0.203 ✓ 30 4.315 0.028 0.879 ✓

C++ 30 142.433 0.122 0.001 − 30 569.268 0.194 0.395 ✓
Python 30 129.839 0.245 0.398 ✓ 30 518.092 0.854 0.102 ✓
CUDA 30 0.101 0.001 0.203 ✓ 30 0.384 0.000 0.839 ✓

OpenACC 30 0.669 0.002 0.052 ✓ 30 2.543 0.003 0.084 ✓
EP

Numba 30 0.108 0.001 0.007 − 30 0.358 0.002 0.017 −

FT

C++ 30 125.279 3.442 0.211 ✓ 30 372.670 1.783 0.819 ✓
Python 30 151.234 2.753 0.395 ✓ 30 622.651 5.398 0.153 ✓
CUDA 30 1.439 0.002 0.835 ✓ 30 6.399 0.005 0.030 −

OpenACC 30 4.589 0.018 0.265 ✓ 30 20.253 0.070 0.063 ✓
Numba 30 1.484 0.003 0.563 ✓ 30 6.354 0.003 0.593 ✓

C++ 30 4.354 0.050 0.239 ✓ 30 19.381 0.144 0.284 ✓
Python 30 7.510 0.017 0.670 ✓ 30 30.977 0.019 0.366 ✓
CUDA 30 0.052 0.000 0.988 ✓ 30 0.710 0.000 0.851 ✓

IS

Numba 30 0.053 0.000 0.457 ✓ 30 0.711 0.000 0.932 ✓

LU

C++ 30 209.341 0.717 0.554 ✓ 30 1,008.549 2.974 0.629 ✓
Python 30 246.204 1.200 0.769 ✓ 30 1,141.680 3.324 0.981 ✓
CUDA 30 2.104 0.005 0.525 ✓ 30 11.842 0.008 0.927 ✓

OpenACC 30 17.451 0.144 0.449 ✓ 30 59.012 0.178 0.815 ✓
Numba 30 33.738 0.437 0.727 ✓ 30 53.972 0.832 0.984 ✓

C++ 30 5.759 0.028 0.852 ✓ 30 51.517 0.110 0.115 ✓
Python 30 20.457 0.102 0.727 ✓ 30 162.779 0.750 0.311 ✓
CUDA 30 0.087 0.002 0.308 ✓ 30 0.914 0.001 0.008 −

OpenACC 30 0.260 0.000 0.855 ✓ 30 2.096 0.001 0.788 ✓
MG

Numba 30 0.633 0.009 0.578 ✓ 30 1.217 0.011 0.686 ✓

SP

C++ 30 208.364 0.582 0.889 ✓ 30 843.760 3.075 0.879 ✓
Python 30 229.561 0.649 0.882 ✓ 30 934.839 2.349 0.874 ✓
CUDA 30 1.786 0.001 0.190 ✓ 30 8.400 0.003 0.179 ✓

OpenACC 30 6.590 0.035 0.377 ✓ 30 31.955 0.058 0.750 ✓
Numba 30 1.975 0.002 0.680 ✓ 30 7.971 0.009 0.246 ✓

Table 8 – Kolmogorov–Smirnov Test for performance results (significance level of 95%)

displayed number in column p-value have a value less than 0.05, the comparison be-
tween Version A and Version B have a significance level of 95% to occurs by chance.

All the different samples compared during our experiments are significant accord-
ingly to the applied T and U tests. Hence, the comparisons have high probability to
express the reality.
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Significance test comparing two samples (versions) for each input size
Class B Class C

NPB
Application Version A Version B Test p-value Significant? Test p-value Significant?

C++ CUDA T-Test 8.464e-069 ✓ T-Test 3.563e-062 ✓
C++ OpenACC T-Test 1.843e-068 ✓ T-Test 8.381e-062 ✓

Python Numba T-Test 1.967e-065 ✓ T-Test 8.199e-069 ✓
CUDA OpenACC T-Test 1.070e-077 ✓ T-Test 1.868e-090 ✓
CUDA Numba T-Test 1.437e-154 ✓ T-Test 2.743e-177 ✓

BT

OpenACC Numba T-Test 3.391e-073 ✓ T-Test 1.527e-086 ✓

CG

C++ CUDA T-Test 4.552e-072 ✓ T-Test 6.629e-084 ✓
C++ OpenACC T-Test 3.97e-072 ✓ T-Test 6.868e-084 ✓

Python Numba U-Test 2.872e-011 ✓ T-Test 2.708e-054 ✓
CUDA OpenACC T-Test 1.163e-047 ✓ T-Test 4.539e-079 ✓
CUDA Numba T-Test 2.041e-049 ✓ T-Test 2.482e-061 ✓

OpenACC Numba T-Test 2.778e-051 ✓ T-Test 5.295e-059 ✓
C++ CUDA U-Test 2.872e-011 ✓ T-Test 4.233e-102 ✓
C++ OpenACC U-Test 2.872e-011 ✓ T-Test 4.265e-102 ✓

Python Numba U-Test 2.868e-011 ✓ U-Test 2.872e-011 ✓
CUDA OpenACC T-Test 5.520e-079 ✓ T-Test 1.076e-084 ✓
CUDA Numba U-Test 2.868e-011 ✓ U-Test 2.872e-011 ✓

EP

OpenACC Numba U-Test 2.868e-011 ✓ U-Test 2.872e-011 ✓

FT

C++ CUDA T-Test 1.085e-046 ✓ U-Test 2.872e-011 ✓
C++ OpenACC T-Test 2.280e-046 ✓ T-Test 2.556e-068 ✓

Python Numba T-Test 6.798e-052 ✓ T-Test 3.150e-061 ✓
CUDA OpenACC T-Test 7.601e-068 ✓ U-Test 2.872e-011 ✓
CUDA Numba T-Test 3.294e-045 ✓ U-Test 2.872e-011 ✓

OpenACC Numba T-Test 1.975e-070 ✓ T-Test 2.231e-068 ✓
C++ CUDA T-Test 9.861e-058 ✓ T-Test 8.609e-063 ✓

Python Numba T-Test 2.549e-078 ✓ T-Test 1.015e-094 ✓IS
CUDA Numba T-Test 3.032e-079 ✓ T-Test 1.628e-071 ✓

LU

C++ CUDA T-Test 6.329e-073 ✓ T-Test 8.625e-075 ✓
C++ OpenACC T-Test 7.631e-077 ✓ T-Test 1.241e-074 ✓

Python Numba T-Test 5.529e-081 ✓ T-Test 2.425e-082 ✓
CUDA OpenACC T-Test 1.767e-060 ✓ T-Test 4.412e-072 ✓
CUDA Numba T-Test 1.720e-055 ✓ T-Test 5.258e-051 ✓

OpenACC Numba T-Test 1.144e-054 ✓ T-Test 1.222e-025 ✓
C++ CUDA T-Test 2.575e-069 ✓ U-Test 2.872e-011 ✓
C++ OpenACC T-Test 2.893e-068 ✓ T-Test 1.531e-078 ✓

Python Numba T-Test 8.497e-069 ✓ T-Test 2.988e-069 ✓
CUDA OpenACC T-Test 2.570e-060 ✓ U-Test 2.872e-011 ✓
CUDA Numba T-Test 7.083e-059 ✓ U-Test 2.872e-011 ✓

MG

OpenACC Numba T-Test 3.895e-049 ✓ T-Test 8.941e-058 ✓

SP

C++ CUDA T-Test 1.657e-075 ✓ T-Test 3.815e-072 ✓
C++ OpenACC T-Test 1.117e-075 ✓ T-Test 7.913e-072 ✓

Python Numba T-Test 2.281e-075 ✓ T-Test 7.548e-077 ✓
CUDA OpenACC T-Test 1.318e-063 ✓ T-Test 1.243e-077 ✓
CUDA Numba T-Test 1.524e-095 ✓ T-Test 6.546e-062 ✓

OpenACC Numba T-Test 3.171e-063 ✓ T-Test 2.311e-080 ✓

Table 9 – Significance test comparing versions from performance results (significance
level of 95%)
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APPENDIX B – Additional performance experiments

This Appendix presents results regarding additional performance experiments on a
new platform with GPU. Such results offer supplementary information to complement
the performance evaluation presented by Section 6.3.

We proceeded experiments on a machine composed of one Intel Xeon E3-1230V2
processor equipped with 4 cores (8 threads contexts) running at 3.3 GHz and 24 GB
main memory. The machine is enhanced with one NVIDIA GTX Titan X GPU with 3,072
CUDA cores at 1,000 MHz and 12 GB of GDDR5 memory. As faced in Section 6.3, our
experiments were restricted to 1 CPU core and 1 GPU without CPU parallelism. The
software environment used was Ubuntu 21.10 operating system, CUDA 11.7, GCC
11.2.0, PGCC 22.5, OpenACC 2.7, Python 3.8.8, Numba 0.53.1 and LLVM 10.0.1.

From now on, this Appendix refers to the current machine as USP, while the plat-
form employed in Section 6.3 will be referenced as UFSM. Comparing both environ-
ments, we perceive as main distinctions an increasing in the frequency of CPUs and
a decreasing in the frequency of the GPU. Besides, there are variances in the number
of available cores for processing. Table 10 shows an outline pointing the differences
between both platforms:

Platform
Configuration USP UFSM
CPU device Intel Xeon E3-1230V2 Intel Xeon E5-2420
CPU cores 4 6 (x2)
CPU freq. 3.3 GHz 1.9 GHZ

Main memory 24 GB 80 GB
GPU device NVIDIA Titan V NVIDIA GTX Titan X
GPU cores 3,072 5,120
GPU freq. 1,000 MHz 1,200 MHz

GPU memory 12 GB GDDR5 12 GB HBM2
Oper. system Ubuntu 21.10 Debian 10

CUDA 11.7 11.2
GCC 11.2.0 8.3.0

PGCC 22.5 21.2
Table 10 – Additional experiments: Configuration comparison between applied plat-
forms

The versions of NPB programs contemplated by this Appendix are the same used
in Section 6.3, as follows:
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• C++: serial C++ code compiled with GCC using -O3 optimization flag.

• Python: serial Python code optimized employing Numba environment.

• CUDA: GPU code developed with C++ and CUDA compiled by NVCC applying
the -O3 optimization flag.

• OpenACC: GPU code developed with C applying OpenACC directives tar-
geting Nvidia GPUs. The compilation was proceeded using PGCC with -O3

-mcmodel=medium flags. Executing this version required the command ulimit

-s unlimited to increase the memory available in the stack.

• Numba: GPU code implemented with Python and CUDA support enabled with
the Numba environment.

The input sizes employed for the experiments were workload classes B and C of-
fered by the NPB suit. We executed the GPU versions on USP with the same config-
urations used on UFSM regarding number of blocks and threads to invoke the GPU
kernels.

B.1 Results

The results presented by this Section are related to Goal G03 of the proposed GQM
model. Firstly, Figure 16 depicts the achieved values for TGPU metric aiming to answer
question Q3.1 (GPU execution time) of the model.

For most of the benchmarks showed in Figure 16, the TGPU values obtained from
executions on USP follow the same pattern of UFSM, that is, CUDA and Numba
achieved similar results as well as both versions outperformed OpenACC. However,
some differences on results can be highlighted. The TGPU values for USP are slower
than UFSM ones as expected since the GPU that equips USP has a lower power than
the ones available in UFSM. Other perceived variances are related to Numba versions,
specially to LU and SP applications. The USP execution of LU achieved a best per-
formance with Numba than with CUDA for class C. On UFSM, the CUDA version had
performed faster. The USP environment, which provides a CPU with greater power
and a GPU with less capacity than UFSM, seems to improve Numba performance for
the LU benchmark. A reason that can explain such fact is the increasing of GPU uti-
lization for Numba on USP, once the execution of non-accelerated codes on the CPU
by Python were probably faster than on UFSM. So, the total time spent by LU on CPU
was lower. An equivalent trend can be seen for CG and MG. Both kernels were also
affected by a low GPU utilization on UFSM and reached and improved performance on
USP. Considering SP, Numba versions executed slower than CUDA ones for classes
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Figure 16 – Additional experiments: Execution time for NPB programs on GPU
(TGPU ) (Results for IS implemented with OpenACC were not shown since the source code of the program is not
available.)

B and C, showing a similar behavior to the BT application. Despite that, Numba out-
performed OpenACC for SP using both workload classes.

The next result is related to question Q3.2 (speedup) of the GQM model. Table 11
illustrates values for metric TSER on USP platform (TS). Similarly to UFSM, the C++
version achieved better execution times than Python for all benchmarks but EP. The
main fact in the serial results are the improvements on performance, since the CPUs
available on USP have a greater computational power than the ones on UFSM.

Time (Ts)
Class B Class C

NPB program C++ Python C++ Python
BT 180.271 230.228 755.233 950.683
CG 69.449 104.822 193.652 292.356
EP 76.432 70.499 305.639 281.266
FT 56.080 101.744 248.270 564.849
IS 1.655 2.451 6.840 11.186
LU 139.953 163.469 722.452 801.043
MG 4.517 12.410 43.597 99.224
SP 128.136 148.019 550.291 615.027

Table 11 – Additional experiments: Serial execution time in seconds.

Combining metrics TGPU and TSER, we calculated metric TSPU intending to an-
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swer question Q3.2. The speedup values are introduced by Figure 17. They were cal-
culated dividing the serial time by the GPU time (TS / TGPU ). As defined in Section 6.3,
the serial time from C++ versions were used to compute the CUDA and OpenACC
speedups. For Numba speedups, it was applied the Python sequential times.
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Figure 17 – Additional experiments: Speedup results for NPB programs (TS / TGPU ) (Re-
sults for IS implemented with OpenACC were not shown since the source code of the program is not available.)

The speedups of all benchmarks were reduced on USP due to hardware differences
which have already been mentioned. Comparing USP and UFSM results, CUDA and
OpenACC speedups seems to keep stable. On the other hand, Numba speedups
proportionally increased for CG, LU and MG when related to CUDA and OpenACC.
These three programs were affected by a low GPU utilization with Numba on UFSM, a
factor that does not seem to have the same impact on USP. Hence, as CG, LU and MG
performances had improved with Numba, the Numba speedups also grew up. For the
SP application, Numba speedups were smaller than CUDA ones on USP influenced
by the slowdowns noted to this program with Numba on such platform.

The performance on USP suggest that Numba executions on GPU can be affected
by the hardware available on a platform. CG, LU, MG and SP presented differences
comparing USP and UFSM results for Numba. This behavior was not perceived for
CUDA and OpenACC, which maintained a constant performance on both environ-
ments. However, the variances regarding Numba results does not appear to decrease
the gains with Python for GPUs, since the achieved speedups for Numba were similar
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to CUDA and greater than OpenACC for most cases on both platforms.

B.2 Statistical analysis over results

This Section has the same purpose of Appendix A, providing a statistical analysis
to ensure a confidence of at least 95% to the experimental data set presented by
Section B.1. Table 12 introduces statistical results for each of the samples. The KS
p-value column (referencing the Kolmogorov–Smirnov Test) displaying a value greater
than 0.05 means a normally-distributed sample considering a significance level of 95%.
Otherwise, the value references a non-distributed sample, being highlighted with red.

Kolmogorov–Smirnov Test for each input size
Class B Class C

NPB
Application Version Sample

size Mean STD* KS
p-value

Normally
distrib.?

Sample
size Mean STD* KS

p-value
Normally
distrib.?

C++ 30 180.271 0.676 0.294 ✓ 30 755.233 4.542 0.451 ✓
Python 30 230.228 0.852 0.872 ✓ 30 950.683 3.076 0.293 ✓
CUDA 30 10.090 0.084 0.059 ✓ 30 37.186 0.419 0.058 ✓

OpenACC 30 22.444 0.051 0.210 ✓ 30 91.419 0.155 0.021 −
BT

Numba 30 16.705 0.044 0.073 ✓ 30 61.551 0.294 0.094 ✓

CG

C++ 30 69.449 0.364 0.131 ✓ 30 193.652 0.928 0.025 −
Python 30 104.823 0.586 0.911 ✓ 30 292.356 1.619 0.852 ✓
CUDA 30 2.098 0.012 0.148 ✓ 30 5.284 0.010 0.072 ✓

OpenACC 30 4.052 0.011 0.613 ✓ 30 7.980 0.005 0.704 ✓
Numba 30 3.701 0.016 0.324 ✓ 30 7.202 0.012 0.698 ✓

C++ 30 76.433 0.086 0.434 ✓ 30 305.639 0.200 0.280 ✓
Python 30 70.499 0.214 0.096 ✓ 30 281.266 0.857 0.256 ✓
CUDA 30 1.025 0.001 0.788 ✓ 30 4.063 0.012 0.533 ✓

OpenACC 30 2.720 0.012 0.389 ✓ 30 10.800 0.014 0.911 ✓
EP

Numba 30 1.015 0.002 0.545 ✓ 30 4.026 0.014 0.128 ✓

FT

C++ 30 56.080 1.263 0.009 − 30 248.270 0.812 0.133 ✓
Python 30 101.744 1.408 0.063 ✓ 30 564.849 12.747 0.060 ✓
CUDA 30 3.334 0.004 0.324 ✓ 30 14.788 0.023 0.889 ✓

OpenACC 30 5.971 0.014 0.148 ✓ 30 27.290 0.178 0.003 −
Numba 30 3.493 0.002 0.825 ✓ 30 14.713 0.007 0.115 ✓

C++ 30 1.656 0.014 0.690 ✓ 30 6.840 0.072 0.875 ✓
Python 30 2.452 0.007 0.095 ✓ 30 11.187 0.015 0.351 ✓
CUDA 30 0.194 0.001 0.000 − 30 1.310 0.000 0.428 ✓

IS

Numba 30 0.197 0.002 0.002 − 30 1.315 0.000 0.140 ✓

LU

C++ 30 139.953 2.489 0.188 ✓ 30 722.453 12.723 0.078 ✓
Python 30 163.469 1.926 0.277 ✓ 30 801.043 3.452 0.450 ✓
CUDA 30 8.463 0.006 0.404 ✓ 30 39.398 0.241 0.024 −

OpenACC 30 27.578 0.032 0.698 ✓ 30 105.877 0.060 0.819 ✓
Numba 30 20.281 0.236 0.958 ✓ 30 35.866 0.101 0.001 −

C++ 30 4.518 0.036 0.064 ✓ 30 43.597 0.226 0.388 ✓
Python 30 12.410 0.029 0.653 ✓ 30 99.224 0.181 0.164 ✓
CUDA 30 0.314 0.009 0.001 − 30 2.522 0.003 0.000 −

OpenACC 30 0.493 0.002 0.004 − 30 4.618 0.003 0.589 ✓
MG

Numba 30 0.451 0.007 0.736 ✓ 30 3.505 0.010 0.471 ✓

SP

C++ 30 128.136 0.449 0.417 ✓ 30 550.291 1.187 0.732 ✓
Python 30 148.019 0.657 0.816 ✓ 30 615.027 1.881 0.612 ✓
CUDA 30 6.255 0.024 0.094 ✓ 30 21.006 0.054 0.003 −

OpenACC 30 17.304 0.045 0.004 − 30 63.537 0.072 0.012 −
Numba 30 10.576 0.032 0.148 ✓ 30 44.009 0.169 0.402 ✓

∗STD = Standard deviation
Table 12 – Additional experiments: Kolmogorov–Smirnov Test for performance re-
sults (significance level of 95%)

Table 13 depicts values for Student’s T-Test (T-Test) and Mann–Whitney U-Test (U-
Test) regarding the comparisons between samples proceeded in the experiments. If
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the value in column p-value is lower than 0.05, the comparison between Version A and
Version B have a significance level of 95% to occurs by chance.

Significance test comparing two samples (versions) for each input size
Class B Class C

NPB
Application Version A Version B Test p-value Significant? Test p-value Significant?

C++ CUDA T-Test 4.716e-073 ✓ T-Test 2.965e-066 ✓
C++ OpenACC T-Test 6.621e-071 ✓ U-Test 2.872e-011 ✓

Python Numba T-Test 1.866e-071 ✓ T-Test 4.587e-074 ✓
CUDA OpenACC T-Test 1.772e-096 ✓ U-Test 2.872e-011 ✓
CUDA Numba T-Test 1.349e-078 ✓ T-Test 2.653e-082 ✓

BT

OpenACC Numba T-Test 2.398e-103 ✓ U-Test 2.872e-011 ✓

CG

C++ CUDA T-Test 1.900e-067 ✓ U-Test 2.872e-011 ✓
C++ OpenACC T-Test 4.693e-067 ✓ U-Test 2.872e-011 ✓

Python Numba T-Test 1.639e-066 ✓ T-Test 1.072e-066 ✓
CUDA OpenACC T-Test 1.036e-112 ✓ T-Test 7.583e-101 ✓
CUDA Numba T-Test 7.078e-096 ✓ T-Test 5.428e-110 ✓

OpenACC Numba T-Test 4.509e-059 ✓ T-Test 1.549e-067 ✓
C++ CUDA T-Test 5.745e-087 ✓ T-Test 2.661e-094 ✓
C++ OpenACC T-Test 8.990e-090 ✓ T-Test 3.391e-094 ✓

Python Numba T-Test 2.261e-074 ✓ T-Test 2.194e-074 ✓
CUDA OpenACC T-Test 3.246e-064 ✓ T-Test 8.141e-140 ✓
CUDA Numba T-Test 5.796e-032 ✓ T-Test 5.722e-015 ✓

EP

OpenACC Numba T-Test 2.175e-065 ✓ T-Test 1.169e-139 ✓

FT

C++ CUDA U-Test 2.872e-011 ✓ T-Test 5.914e-073 ✓
C++ OpenACC U-Test 2.872e-011 ✓ U-Test 2.872e-011 ✓

Python Numba T-Test 4.991e-055 ✓ T-Test 5.589e-049 ✓
CUDA OpenACC T-Test 1.232e-077 ✓ U-Test 2.872e-011 ✓
CUDA Numba T-Test 4.014e-065 ✓ T-Test 2.768e-018 ✓

OpenACC Numba T-Test 1.099e-069 ✓ U-Test 2.872e-011 ✓
C++ CUDA U-Test 2.867e-011 ✓ T-Test 2.747e-056 ✓

Python Numba U-Test 2.872e-011 ✓ T-Test 1.198e-083 ✓IS
CUDA Numba U-Test 1.792e-006 ✓ T-Test 1.689e-074 ✓

LU

C++ CUDA T-Test 1.591e-051 ✓ U-Test 2.872e-011 ✓
C++ OpenACC T-Test 1.469e-049 ✓ T-Test 1.935e-050 ✓

Python Numba T-Test 3.584e-057 ✓ U-Test 2.872e-011 ✓
CUDA OpenACC T-Test 5.825e-088 ✓ U-Test 2.872e-011 ✓
CUDA Numba T-Test 6.412e-051 ✓ U-Test 2.872e-011 ✓

OpenACC Numba T-Test 5.006e-046 ✓ U-Test 2.872e-011 ✓
C++ CUDA U-Test 2.863e-011 ✓ U-Test 2.872e-011 ✓
C++ OpenACC U-Test 2.872e-011 ✓ T-Test 1.885e-066 ✓

Python Numba T-Test 3.385e-085 ✓ T-Test 6.234e-081 ✓
CUDA OpenACC U-Test 2.863e-011 ✓ U-Test 2.872e-011 ✓
CUDA Numba U-Test 2.863e-011 ✓ U-Test 2.872e-011 ✓

MG

OpenACC Numba U-Test 2.872e-011 ✓ T-Test 1.771e-068 ✓

SP

C++ CUDA T-Test 1.739e-072 ✓ U-Test 2.872e-011 ✓
C++ OpenACC U-Test 2.872e-011 ✓ U-Test 2.872e-011 ✓

Python Numba T-Test 4.013e-069 ✓ T-Test 1.470e-074 ✓
CUDA OpenACC U-Test 2.872e-011 ✓ U-Test 2.872e-011 ✓
CUDA Numba T-Test 1.749e-103 ✓ U-Test 2.872e-011 ✓

OpenACC Numba U-Test 2.872e-011 ✓ U-Test 2.872e-011 ✓

Table 13 – Additional experiments: Significance test comparing versions from perfor-
mance results (significance level of 95%)

Regarding the applied statistical tests, most of the presented samples are normally
distributed accordingly to KS-Test results (Table 12). Also, the proceeded comparisons
between these samples have high probability to express the reality, since the employed
T-Test and U-Test detailed in Table 13 indicates they are significant.
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